Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 053403    DOI: 10.1088/1674-1056/22/5/053403
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

First-principles study of electronic properties of interfacial atoms in metal-metal contact electrification

Zhang Yuan-Yue (张远月), Shao Tian-Min (邵天敏), Su Kang (苏康)
State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
Abstract  The mechanism of contact electrification between metals was studied using the first-principles method, taking the Ag-Fe contact as an example. Charge population, charge density difference, and the orbitals and densities of states (DOS) were calculated to study the electronic properties of the contacting interfacial atoms. Based on the calculation, the amount of contact charge was obtained. The investigation revealed that the electrons near Fermi levels with higher energies transfer between the outermost orbitals (s orbitals for Ag and d orbitals for Fe). Meanwhile, polarized covalent bonds form between the d electrons in the deep energy states. These two effects together lead to an increase of charge magnitude at the interface. Also, the electrons responsible for electrification can be determined by their energies and orbitals.
Keywords:  contact electrification      first-principles calculations      charge transfer      metal-metal contact  
Received:  22 October 2012      Revised:  07 December 2012      Accepted manuscript online: 
PACS:  34.70.+e (Charge transfer)  
  73.40.Jn (Metal-to-metal contacts)  
  31.15.A- (Ab initio calculations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50823003 and 90923018).
Corresponding Authors:  Shao Tian-Min     E-mail:  shaotm@tsinghua.edu.cn

Cite this article: 

Zhang Yuan-Yue (张远月), Shao Tian-Min (邵天敏), Su Kang (苏康) First-principles study of electronic properties of interfacial atoms in metal-metal contact electrification 2013 Chin. Phys. B 22 053403

[1] Harper W R 1998 Contact and Frictional Electrification (Morgan Hill: Laplacian Press)
[2] Lowell J and Rose-innes A C 1980 Adv. Phys. 29 947
[3] Bailey A G 2001 J. Electrostat. 51 82
[4] Williams M 2012 J. Electrostat. 70 233
[5] Grzybowski B A, Fialkowski M and Wiles J A 2005 J. Phys. Chem. B 109 20511
[6] McCarty L, Winkleman A and Whitesides G 2007 Angew. Chem. Int. Ed. 46 206
[7] Lowell J 1975 J. Phys. D: Appl. Phys. 8 53
[8] Greason W D 2000 J. Electrostat. 49 245
[9] Matsuyama T and Yamamoto H 1997 J. Phys. D: Appl. Phys. 30 2170
[10] Ireland P M 2009 J. Electrostat. 67 462
[11] Yoshida M, Ii N, Shimosaka A, Shirakawa Y and Hidaka J 2006 Chem. Eng. Sci. 61 2239
[12] Shirakawa Y, Ii N, Yoshida M, Takashima R, Shimosaka A and Hidaka J 2010 Adv. Powder Technol. 21 500
[13] Gong C, Lee G, Shan B, Vogel E, Wallace R and Cho K 2010 J. Appl. Phys. 108 123711
[14] Masuda S, Koide Y, Aoki M and Morikawa Y 2007 J. Phys. Chem. C 111 11747
[15] Liu W, Cheng J, Yang C X, Li H H, Wang Y J and Liu D S 2011 Chin. Phys. B 20 107302
[16] Ohto T, Yamashita K and Nakamura H 2011 Phys. Rev. B 84 045417
[17] Barraza-Lopez S, Vanevic M, Kindermann M and Chou M 2010 Phys. Rev. Lett. 104 076807
[18] Rusu P, Giovannetti G, Weijtens C, Coehoorn R and Brocks G 2010 Phys. Rev. B 81 125403
[19] Khomyakov P A, Giovannetti G, Rusu P, Brocks G, van den Brink J and Kelly P J 2009 Phys. Rev. B 79 195425
[20] Lin Z and Bristowe P D 2007 Phys. Rev. B 75 205423
[21] Meng T, Wang C and Wang S 2007 J. Appl. Phys. 102 013709
[22] Wang J T, Li Z Q and Kawazoe Y 1998 J. Phys.: Condens. Matter 10 9655
[23] Kyuno K, Ha J G and Yamamoto R 1996 J. Phys. Soc. Jpn. 65 1334
[24] Seaver A E 2012 Proceedings of the 2012 Electrostatics Joint Conference Cambridge, Canada, June 12-14, 2012
[25] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K and Payne M C 2005 Zeitschrift fuer Kristallographie 220 567
[26] Payne M C, Teter M P, Allan D C and Arias T A 1992 Rev. Mod. Phys. 64 1045
[27] Perdew J, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] Körling M and Häglund J 1992 Phys. Rev. B 45 13293
[29] Yuan Q, Zhao Y P, Li L and Wang T 2009 J. Phys. Chem. C 113 6107
[30] Simmons G and Wang H 1971 Single Crystal Elastic Constants and Calculated Aggregate Properties (USA: MIT Press)
[31] Hirshfeld F L 1977 Theor. Chem. Acc. 44 129
[1] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[2] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[3] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Evolution of surfaces and mechanisms of contact electrification between metals and polymers
Lin-Feng Wang(王林锋), Yi Dong(董义), Min-Hao Hu(胡旻昊), Jing Tao(陶静), Jin Li(李进), and Zhen-Dong Dai(戴振东). Chin. Phys. B, 2022, 31(6): 066202.
[7] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[8] Computational design of ratiometric two-photon fluorescent Zn2+ probes based on quinoline and di-2-picolylamine moieties
Zhe Shao(邵哲), Wen-Ying Zhang(张纹莹), and Ke Zhao(赵珂). Chin. Phys. B, 2022, 31(5): 053302.
[9] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[10] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[11] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[12] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[13] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[14] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[15] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
No Suggested Reading articles found!