|
|
Theoretical study of stereodynamics for the D'+DS(ν = 0,j = 0)→D'D+S abstraction reaction |
Guo Ya-Hui (郭雅慧), Zhang Feng-Yun (张凤昀), Ma Hong-Zhang (马红章) |
College of Science, China University of Petroleum, Qingdao 266555, China |
|
|
Abstract Quasiclassical trajectory (QCT) calculations have been performed for the abstraction reaction, D' +DS(v = 0, j = 0)→D'D+S on a new LZHH potential energy surface (PES) of the adiabatic 3A'' electronic state [Lü et al. 2012 J. Chem. Phys. 136 094308]. The collision energy effect on the integral cross section and product polarization are studied over a wide collision energy range from 0.1 to 2.0 eV. The cross sections calculated by the QCT procedure are in good accordance with previous quantum wave packet results. The three angular distribution functions, P(θr), P(φr), and P(θr,φr), together with the four commonly used polarization-dependent differential cross sections ((2π/σ)(ds00/dωt), (2π/σ)(ds20/dωt), (2π/σ)(ds22+/dωt), (2π/σ)(ds21-/dωt)) are obtained to gain insight into the chemical stereodynamics of the title reaction. Influences of the collision energy on the product polarization are exhibited and discussed.
|
Received: 17 October 2012
Revised: 26 December 2012
Accepted manuscript online:
|
PACS:
|
34.50.Lf
|
(Chemical reactions)
|
|
82.20.-w
|
(Chemical kinetics and dynamics)
|
|
82.20.Pm
|
(Rate constants, reaction cross sections, and activation energies)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 41201336 and 41001250). |
Corresponding Authors:
Guo Ya-Hui
E-mail: yhguo@upc.edu.cn
|
Cite this article:
Guo Ya-Hui (郭雅慧), Zhang Feng-Yun (张凤昀), Ma Hong-Zhang (马红章) Theoretical study of stereodynamics for the D'+DS(ν = 0,j = 0)→D'D+S abstraction reaction 2013 Chin. Phys. B 22 053402
|
[1] |
Chu T S, Han K L and Schatz G C 2007 J. Phys. Chem. A 111 8286
|
[2] |
Banares L, Castillo J F, Honvault P and Launay J M 2005 Phys. Chem. Chem. Phys. 7 627
|
[3] |
Klos J A, Dagdigian P J and Alexander M H 2007 J. Chem. Phys. 127 154321
|
[4] |
Maiti B, Schatz G C and Lendvay G 2004 J. Phys. Chem. A 108 8772
|
[5] |
Yang H, Han K, Schatz G C, Smith S C and Hankel M 2010 Phys. Chem. Chem. Phys. 12 12711
|
[6] |
Chu T S and Han K L 2008 Phys. Chem. Chem. Phys. 10 2431
|
[7] |
Chu T S, Zhang X and Han K L 2005 J. Chem. Phys. 122 214301
|
[8] |
Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
|
[9] |
Shiina H, Miyoshi A and Matsui H 1998 J. Phys. Chem. A 102 3556
|
[10] |
Tsuchiya K, Yamashita K, Miyoshi A and Matsui H 1996 J. Phys. Chem. 100 17202
|
[11] |
Martin R L 1983 Chem. Phys. 82 337
|
[12] |
Ho T S, Hollebeek T, Rabitz H, Der Chao S, Skodje R T, Zyubin A S and Mebel A M 2002 J. Chem. Phys. 116 4124
|
[13] |
Lü S J, Zhang P Y, Han K L and He G Z 2012 J. Chem. Phys. 136 094308
|
[14] |
Lü S J, Zhang P Y and He G Z 2012 Chin. Phys. Lett. 29 073401
|
[15] |
Wang T and Yue X F 2011 Chin. Phys. Lett. 28 023101
|
[16] |
Zhao J and Luo Y 2011 Chin. Phys. B 20 043402
|
[17] |
Liu Y F, Liu Y L and Liang B 2012 Chin. Phys. B 21 098201
|
[18] |
Xu Z H, Zong F J, Han B R, Dong S H, Liu J Q and Ji F 2012 Chin. Phys. B 21 093103
|
[19] |
Yue X F 2012 Chin. Phys. B 21 073401
|
[20] |
Ge M H and Zheng Y J 2011 Chin. Phys. B 20 083401
|
[21] |
Liu S L and Shi Y 2011 Chin. Phys. B 20 013404
|
[22] |
Orr-Ewing A J and Zare R N 1994 Annu. Rev. Phys. Chem. 45 315
|
[23] |
Han K L, Zheng X G, Sun B F, He G Z and Zhang R Q 1991 Chem. Phys. Lett. 181 474
|
[24] |
Aquilanti V, Bartolomei M, Pirani F, Cappelletti D, Vecchiocattivi F, Shimizu Y and Kasai T 2005 Phys. Chem. Chem. Phys. 7 291
|
[25] |
Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
|
[26] |
Chen M D, Tang B Y, Han K L and Lou N Q 2001 Chem. Phys. Lett. 337 349
|
[27] |
Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446
|
[28] |
Li W L, Wang M S, Yang C L, Ma X G, Wang D H and Liu W W 2007 Chem. Phys. Lett. 445 125
|
[29] |
Kang L H and Zhu M Y 2010 J. Mol. Struct.-THEOCHEM 945 116
|
[30] |
Han B R, Zong F J, Wang C L, Ma W Y and Zhou J H 2010 Chem. Phys. 374 94
|
[31] |
Meng Q T, Zhao J, Xu Y and Yue D G 2009 Chem. Phys. 362 65
|
[32] |
Wei Q, Li X and Li T 2010 Chem. Phys. 368 58
|
[33] |
Xu W W, Liu X G, Luan S X and Zhang Q G 2009 Chem. Phys. 355 21
|
[34] |
Zhang J, Chu T S, Dong S L, Yuan S P, Fu A P and Duan Y B 2011 Chin. Phys. Lett. 28 093403
|
[35] |
Zhao J, Xu Y and Meng Q T 2009 J. Phys. B 42 165006
|
[36] |
Li X H, Wang M S, Pino I, Yang C L and Ma L Z 2009 Phys. Chem. Chem. Phys. 11 10438
|
[37] |
Xiao J, Yang C L, Tong X F, Wang M S and Ma X G 2011 J. Phys. Chem. A 115 1486
|
[38] |
Yue X F, Zhang Y Q, Feng H R and Wu E L 2010 J. Mol. Struct.-THEOCHEM 955 61
|
[39] |
Chu T S, Zhang H, Yuan S P, Fu A P, Si H Z, Tian F H and Duan Y B 2009 J. Phys. Chem. A 113 3470
|
[40] |
Yu Y J, Xu Q and Xu X W 2011 Chin. Phys. B 20 123402
|
[41] |
Aoiz F J, Brouard M and Enriquez P A 1996 J. Chem. Phys. 105 4964
|
[42] |
Han B R, Yang H, Zheng Y J and Varandas A J C 2010 Chem. Phys. Lett. 493 225
|
[43] |
Ju L P, Han K L and Zhang J Z H 2009 J. Comput. Chem. 30 305
|
[44] |
Zhang W Q, Cong S L, Zhang C H, Xu X S and Chen M D 2009 J. Phys. Chem. A 113 4192
|
[45] |
Wang M L, Han K L and He G Z 1998 J. Phys. Chem. A 102 10204
|
[46] |
Duan Z X, Li W L and Qiu M H 2012 J. Chem. Phys. 136 144309
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|