Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 053402    DOI: 10.1088/1674-1056/22/5/053402
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Theoretical study of stereodynamics for the D'+DS(ν = 0,j = 0)→D'D+S abstraction reaction

Guo Ya-Hui (郭雅慧), Zhang Feng-Yun (张凤昀), Ma Hong-Zhang (马红章)
College of Science, China University of Petroleum, Qingdao 266555, China
Abstract  Quasiclassical trajectory (QCT) calculations have been performed for the abstraction reaction, D' +DS(v = 0, j = 0)→D'D+S on a new LZHH potential energy surface (PES) of the adiabatic 3A'' electronic state [Lü et al. 2012 J. Chem. Phys. 136 094308]. The collision energy effect on the integral cross section and product polarization are studied over a wide collision energy range from 0.1 to 2.0 eV. The cross sections calculated by the QCT procedure are in good accordance with previous quantum wave packet results. The three angular distribution functions, P(θr), Pr), and P(θrr), together with the four commonly used polarization-dependent differential cross sections ((2π/σ)(ds00/dωt), (2π/σ)(ds20/dωt), (2π/σ)(ds22+/dωt), (2π/σ)(ds21-/dωt)) are obtained to gain insight into the chemical stereodynamics of the title reaction. Influences of the collision energy on the product polarization are exhibited and discussed.
Keywords:  quasi-classical trajectory      integral cross section      stereodynamics      product polarization  
Received:  17 October 2012      Revised:  26 December 2012      Accepted manuscript online: 
PACS:  34.50.Lf (Chemical reactions)  
  82.20.-w (Chemical kinetics and dynamics)  
  82.20.Pm (Rate constants, reaction cross sections, and activation energies)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 41201336 and 41001250).
Corresponding Authors:  Guo Ya-Hui     E-mail:  yhguo@upc.edu.cn

Cite this article: 

Guo Ya-Hui (郭雅慧), Zhang Feng-Yun (张凤昀), Ma Hong-Zhang (马红章) Theoretical study of stereodynamics for the D'+DS(ν = 0,j = 0)→D'D+S abstraction reaction 2013 Chin. Phys. B 22 053402

[1] Chu T S, Han K L and Schatz G C 2007 J. Phys. Chem. A 111 8286
[2] Banares L, Castillo J F, Honvault P and Launay J M 2005 Phys. Chem. Chem. Phys. 7 627
[3] Klos J A, Dagdigian P J and Alexander M H 2007 J. Chem. Phys. 127 154321
[4] Maiti B, Schatz G C and Lendvay G 2004 J. Phys. Chem. A 108 8772
[5] Yang H, Han K, Schatz G C, Smith S C and Hankel M 2010 Phys. Chem. Chem. Phys. 12 12711
[6] Chu T S and Han K L 2008 Phys. Chem. Chem. Phys. 10 2431
[7] Chu T S, Zhang X and Han K L 2005 J. Chem. Phys. 122 214301
[8] Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
[9] Shiina H, Miyoshi A and Matsui H 1998 J. Phys. Chem. A 102 3556
[10] Tsuchiya K, Yamashita K, Miyoshi A and Matsui H 1996 J. Phys. Chem. 100 17202
[11] Martin R L 1983 Chem. Phys. 82 337
[12] Ho T S, Hollebeek T, Rabitz H, Der Chao S, Skodje R T, Zyubin A S and Mebel A M 2002 J. Chem. Phys. 116 4124
[13] Lü S J, Zhang P Y, Han K L and He G Z 2012 J. Chem. Phys. 136 094308
[14] Lü S J, Zhang P Y and He G Z 2012 Chin. Phys. Lett. 29 073401
[15] Wang T and Yue X F 2011 Chin. Phys. Lett. 28 023101
[16] Zhao J and Luo Y 2011 Chin. Phys. B 20 043402
[17] Liu Y F, Liu Y L and Liang B 2012 Chin. Phys. B 21 098201
[18] Xu Z H, Zong F J, Han B R, Dong S H, Liu J Q and Ji F 2012 Chin. Phys. B 21 093103
[19] Yue X F 2012 Chin. Phys. B 21 073401
[20] Ge M H and Zheng Y J 2011 Chin. Phys. B 20 083401
[21] Liu S L and Shi Y 2011 Chin. Phys. B 20 013404
[22] Orr-Ewing A J and Zare R N 1994 Annu. Rev. Phys. Chem. 45 315
[23] Han K L, Zheng X G, Sun B F, He G Z and Zhang R Q 1991 Chem. Phys. Lett. 181 474
[24] Aquilanti V, Bartolomei M, Pirani F, Cappelletti D, Vecchiocattivi F, Shimizu Y and Kasai T 2005 Phys. Chem. Chem. Phys. 7 291
[25] Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
[26] Chen M D, Tang B Y, Han K L and Lou N Q 2001 Chem. Phys. Lett. 337 349
[27] Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446
[28] Li W L, Wang M S, Yang C L, Ma X G, Wang D H and Liu W W 2007 Chem. Phys. Lett. 445 125
[29] Kang L H and Zhu M Y 2010 J. Mol. Struct.-THEOCHEM 945 116
[30] Han B R, Zong F J, Wang C L, Ma W Y and Zhou J H 2010 Chem. Phys. 374 94
[31] Meng Q T, Zhao J, Xu Y and Yue D G 2009 Chem. Phys. 362 65
[32] Wei Q, Li X and Li T 2010 Chem. Phys. 368 58
[33] Xu W W, Liu X G, Luan S X and Zhang Q G 2009 Chem. Phys. 355 21
[34] Zhang J, Chu T S, Dong S L, Yuan S P, Fu A P and Duan Y B 2011 Chin. Phys. Lett. 28 093403
[35] Zhao J, Xu Y and Meng Q T 2009 J. Phys. B 42 165006
[36] Li X H, Wang M S, Pino I, Yang C L and Ma L Z 2009 Phys. Chem. Chem. Phys. 11 10438
[37] Xiao J, Yang C L, Tong X F, Wang M S and Ma X G 2011 J. Phys. Chem. A 115 1486
[38] Yue X F, Zhang Y Q, Feng H R and Wu E L 2010 J. Mol. Struct.-THEOCHEM 955 61
[39] Chu T S, Zhang H, Yuan S P, Fu A P, Si H Z, Tian F H and Duan Y B 2009 J. Phys. Chem. A 113 3470
[40] Yu Y J, Xu Q and Xu X W 2011 Chin. Phys. B 20 123402
[41] Aoiz F J, Brouard M and Enriquez P A 1996 J. Chem. Phys. 105 4964
[42] Han B R, Yang H, Zheng Y J and Varandas A J C 2010 Chem. Phys. Lett. 493 225
[43] Ju L P, Han K L and Zhang J Z H 2009 J. Comput. Chem. 30 305
[44] Zhang W Q, Cong S L, Zhang C H, Xu X S and Chen M D 2009 J. Phys. Chem. A 113 4192
[45] Wang M L, Han K L and He G Z 1998 J. Phys. Chem. A 102 10204
[46] Duan Z X, Li W L and Qiu M H 2012 J. Chem. Phys. 136 144309
[1] State-to-state integral cross sections and rate constants for the N+(3P)+HD→NH+/ND++D/H reaction: Accurate quantum dynamics studies
Hanghang Chen(陈航航), Zijiang Yang(杨紫江), and Maodu Chen(陈茂笃). Chin. Phys. B, 2022, 31(9): 098204.
[2] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[3] A new global potential energy surface of the ground state of SiH2+ (X2A1) system and dynamics calculations of the Si+ + H2 (v0 = 2, j0 = 0) → SiH+ + H reaction
Yong Zhang(张勇), Xiugang Guo(郭秀刚), and Haigang Yang(杨海刚). Chin. Phys. B, 2022, 31(11): 113101.
[4] Exact quantum dynamics study of the H(2S)+SiH+(X1Σ+) reaction on a new potential energy surface of SiH2+(X2A1)
Wen-Li Zhao(赵文丽), Rui-Shan Tan(谭瑞山), Xue-Cheng Cao(曹学成), Feng Gao(高峰), and Qing-Tian Meng(孟庆田). Chin. Phys. B, 2021, 30(12): 123403.
[5] Mechanism analysis of reaction S+(2D)+H2(X1Σg+)→SH+(X3Σ-)+H(2S) based on the quantum state-to-state dynamics
Jin-Yu Zhang(张金玉), Ting Xu(许婷), Zhi-Wei Ge(葛志伟), Juan Zhao(赵娟), Shou-Bao Gao(高守宝), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2020, 29(6): 063101.
[6] Effect of isotope on state-to-state dynamics for reactive collision reactions O(3P)+H2+→OH++H and O(3P)+H2+→OH+H+ in ground state 12A" and first excited 12A' potential energy surfaces
Juan Zhao(赵娟), Ting Xu(许婷), Lu-Lu Zhang(张路路), Li-Fei Wang(王立飞). Chin. Phys. B, 2020, 29(2): 023105.
[7] Quasi-classical trajectory study of H+LiH (v=0, 1, 2, j=0)→Li+H2 reaction on a new global potential energy surface
Yu-Liang Wang(王玉良), De-Zhi Su(宿德志), Cun-Hai Liu(刘存海), Hui Li(李慧). Chin. Phys. B, 2019, 28(8): 083402.
[8] Non-adiabatic quantum dynamical studies of Na(3p)+HD(ν=1, j=0)→NaH/NaD+D/H reaction
Yue-Pei Wen(温月佩), Bayaer Buren(布仁巴雅尔), Mao-Du Chen(陈茂笃). Chin. Phys. B, 2019, 28(6): 063401.
[9] Dynamics of the Au+H2 reaction by time-dependent wave packet and quasi-classical trajectory methods
Yong Zhang(张勇), Chengguo Jiang(姜成果). Chin. Phys. B, 2019, 28(12): 123101.
[10] Dynamics of the CH4+O(3P)→CH3(ν=0)+OH(ν'=0) reaction
Zhong-An Jiang(蒋仲安), Ya Peng(彭亚), Ju-Shi Chen(陈举师), Gui Lan(兰桂), Hao-Yu Lin(林浩宇). Chin. Phys. B, 2018, 27(6): 063401.
[11] Intrinsic product polarization and branch ratio in theS(1D, 3P)+HD reaction on three electronic states
Lin Li(李琳), Shunle Dong(董顺乐). Chin. Phys. B, 2016, 25(9): 093401.
[12] Effects of collision energy and rotational quantum number on stereodynamics of the reactions: H(2S)+NH(v=0, j=0, 2, 5, 10)→N(4S)+H2
Wei Wang(王伟), Yong-Jiang Yu(于永江), Gang Zhao(赵刚), Chuan-Lu Yang(杨传路). Chin. Phys. B, 2016, 25(8): 083402.
[13] Energy and rotation-dependent stereodynamics of H(2S) + NH(a1Δ)→H2(X1Σg+) + N(2D) reaction
Yong-Qing Li(李永庆), Yun-Fan Yang(杨云帆), Yang Yu(于洋), Yong-jia Zhang(张永嘉), Feng-Cai Ma(马凤才). Chin. Phys. B, 2016, 25(2): 023401.
[14] Stereodynamics of the reactions: F+H2/HD/HT→FH+H/D/T
Chi Xiao-Lin (迟晓琳), Zhao Jin-Feng (赵金峰), Zhang Yong-Jia (张永嘉), Ma Feng-Cai (马凤才), Li Yong-Qing (李永庆). Chin. Phys. B, 2015, 24(5): 053401.
[15] Quasi-classical trajectory study of collision energy effect on the stereodynamics of H + BrO→O + HBr reaction
Xie Ting-Xian (解廷献), Zhang Ying-Ying (张莹莹), Shi Ying (石英), Li Ze-Rui (李泽瑞), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(4): 043402.
No Suggested Reading articles found!