Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 046101    DOI: 10.1088/1674-1056/22/4/046101
Special Issue: TOPICAL REVIEW — Magnetism, magnetic materials, and interdisciplinary research
TOPICAL REVIEW—Magnetism, magnetic materials, and interdisciplinary research Prev   Next  

Structural changes concurrent with ferromagnetic transition

Yang Sen (杨森)a, Bao Hui-Xin (鲍慧新)a, Zhou Chao (周超)a, Wang Yu (王宇)a, Ren Xiao-Bing (任晓兵)a b, Song Xiao-Ping (宋晓平)a, Yoshitaka Matsushitac, Yoshio Katsuyac, Masahiko Tanakac, Keisuke Kobayashic
a Frontier Institute of Science and Technology, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, and State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China;
b Ferroic Physics Group, National Institute for Materials Science, Tsukuba, 305-0047, Ibaraki, Japan;
c National Institute for Materials Science, Beamline BL15XU, Spring-8, 1-1-1 Kohto, Sayo-cho, Hyogo 679-5148, Japan

Ferromagnetic transition has generally been considered to involve only an ordering of magnetic moment with no change in the host crystal structure or symmetry, as evidenced by a wealth of crystal structure data from conventional X-ray diffractometry (XRD). However, the existence of magnetostriction in all known ferromagnetic systems indicates that the magnetic moment is coupled to the crystal lattice; hence there is a possibility that magnetic ordering may cause a change in crystal structure. With the development of high-resolution synchrotron XRD, more and more magnetic transitions have been found to be accompanied by simultaneous structural changes. In this article, we review our recent progress in understanding the structural change at a ferromagnetic transition, including synchrotron XRD evidence of structural changes at the ferromagnetic transition, a phenomenological theory of crystal structure changes accompanying ferromagnetic transitions, new insight into magnetic morphotropic phase boundaries (MPB) and so on. Two intriguing implications of non-centric symmetry in the ferromagnetic phase and the first-order nature of ferromagnetic transition are also discussed here. In short, this review is intended to give a self-consistent and logical account of structural change occurring simultaneously with a ferromagnetic transition, which may provide new insight for developing highly magneto-responsive materials.

Keywords:  ferromagnetic transition      crystal structure      morphotropic phase boundary (MPB)      magnetostriction      multiferroicity  
Received:  26 February 2013      Accepted manuscript online: 
PACS:  61.05.C- (X-ray diffraction and scattering)  
  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  75.10.-b (General theory and models of magnetic ordering)  
  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  

Project supported by the National Basic Research Program of China (Grant No. 2012CB619401), the National Natural Science Foundation of China (Grant Nos. 51222104 and 51071117), and the Fundamental Research Funds for Central Universities.

Corresponding Authors:  Yang Sen     E-mail:

Cite this article: 

Yang Sen (杨森), Bao Hui-Xin (鲍慧新), Zhou Chao (周超), Wang Yu (王宇), Ren Xiao-Bing (任晓兵), Song Xiao-Ping (宋晓平), Yoshitaka Matsushita, Yoshio Katsuya, Masahiko Tanaka, Keisuke Kobayashi Structural changes concurrent with ferromagnetic transition 2013 Chin. Phys. B 22 046101

[1] JCPDS-International Centre for Diffraction Data:
[2] Bozorth R M 2003 Ferromagnetism (New Jersey: Wiley)
[3] Wadhawan V K 2000 Introduction to Ferroic Materials (Amsterdam:Gordon and Breach)
[4] Manosa L, Planes A, Zarestky J, Lograsso T, Schlagel D L and StassisC 2001 Phys. Rev. B 64 024305
[5] Kakeshita T and Ullakko K 2002 MRS Bulletin 27105
[6] du Tr′emolet de Lacheisserie E 1993 Magnetostriction: Theory and Applicationsof Magnetoelasticity (Florida: CRC Press)
[7] Hathaway K B and Clark A E 1993 MRS Bulletin 18 34
[8] Callen E R and Callen H B 1963 Phys. Rev. 129 578
[9] Opechowski W and Guccione R 1965 Magnetism Vol. IIA, ed. Rado GY and Shull H (New York: Academic Press)
[10] Uchino K 2000 Ferroelectric Devices (New York: Marcel Dekker)
[11] Cohen R E 1992 Nature 358 136
[12] Kay H F and Vousden P 1949 Phil. Mag. 40 1019
[13] Cullity B D 1959 Elements of X-ray Diffraction (Massachusetts:Addison-Wesley) pp. 410-414
[14] Guo R, Cross L E, Park S E, Noheda B, Cox D E and Shirane G 2000Phys. Rev. Lett. 84 5423
[15] Prewitt C T, Coppens P, Phillips J C and Finger L W 1987 Science 238312
[16] Jauch W, Reehuis M, Bleif H J and Kubanek F 2001 Phys. Rev. B 64052102
[17] Ishibashi H and Yasumi T 2007 J. Magn. Magn. Mater. 310 e610
[18] Rozenberg G Kh, Pasternak M P, XuWM, Amiel Y, Hanfland M, AmboageM, Taylor R D and Jeanloz R 2006 Phys. Rev. Lett. 96 045705
[19] Yang S and Ren X B 2008 Phys. Rev. B 77 014407
[20] Yang S, Bao H X, Zhou C, Wang Y, Ren X B, Matsushita Y, KatsuyaY, Tanaka M, Kobayashi K, Song X and Gao J R 2010 Phys. Rev. Lett.104 197201
[21] O’Handley R C 2000 Modern Magnetic Materials: Principles and Applications(New York: Wiley)
[22] Wang W H and Ren X R 2006 J. Crystal Growth 289 605
[23] Bi Y J, Abell J S and Ford D 1996 J. Crystal Growth 166 298
[24] Ren X B 2004 Nature Materials 3 91
[25] Zhang L X and Ren X B 2005 Phys. Rev. B 71 174108
[26] Ren X and Otsuka K 1997 Nature 389 579
[27] Otsuka K and Ren X 2005 Prog. Mater. Sci. 50 511
[28] Kittel C 1949 Rev. Mod. Phys. 21 541
[29] Ahn K H, Lookman T and Bishop A R 2004 Nature 428 401
[30] Cullen J R, Clark A E and Hathaway K B 1994 Materials Science andTechnology Vol. 3B, ed. Cahn R W, Haasen P and Kramer E J) (NewYork: VCH) pp. 529-565
[31] Jaffe B, Cook W R and Jaffe H 1971 Piezoelectric Ceramics (NewYork: Academic Press)
[32] Sch¨onau K A, Schmitt L A, Knapp M, Fuess H, Eichel R A, Kungl Hand Hoffmann M J 2007 Phys. Rev. B 75 184117
[33] Ahart M, Somayazulu M, Cohen R E, Ganesh P, Dera P, Mao H K,Hemley R J, Ren Y, Liermann P and Wu Z G 2008 Nature 451 545
[34] Damjanovic D 1998 Rep. Prog. Phys. 61 1267
[35] Jaffe B, Roth R S and Marzullo S 1954 J. Appl. Phys. 25 809
[36] Colla V E, Yushin N K and Viehland D 1998 J. Appl. Phys. 83 3298
[37] Cao W and Cross L E 1993 Phys. Rev. B 47 4825
[38] Damjanovic D 2005 J. Am. Ceram. Soc. 88 2663
[39] Rossetti Jr G A, Khachaturyan A G, Akcay G and Ni Y 2008 J. Appl.Phys. 103 114113
[40] Noheda B, Cox D E, Shirane G, Gonzalo J A, Cross L E and Park S E1999 Appl. Phys. Lett. 74 2059
[41] Guo R, Cross L E, Park S E, Noheda B, Cox D E and Shirane G 2000Phys. Rev. Lett. 84 5423
[42] Schonau K A, Schmitt L A, Knapp M, Fuess H, Eichel R A, Kungl Hand Hoffmann M J 2007 Phys. Rev. B 75 184117
[43] Schonau K A, Knapp M, Kungl H. Hoffmann M J and Fuess H 2007Phys. Rev. B 76 144112
[44] Newnham R E 1998 Acta Cryst. A54 729
[45] Lee E W and Pourarian F 1976 Phys. Stat. Sol. (a) 34 383
[46] Hirosawa S and Nakamura Y 1982 J. Phys. Soc. Jpn. 51 1162
[47] Atzmony U and Dariel M P 1976 Phys. Rev. B 13 4006
[48] Zhou C, Bao H X, Yang S, Yao Y G, Ren S, Zhang Z and Ren X BMorphotropic Phase Boundary in Ferromagnetic Alloy Tb1?xGdxCo2(submitted to Phys. Rev. Lett.)
[49] Newnham R E 2005 Properties of Materials: Anisotropy, Symmetry,Structure (London: Oxford University Press) p. 34
[50] Ahluwalia R, Lookman T, Saxena A and Shenoy S R 2004 Phase Transitions77 457
[51] Yamasaki Y, Miyasaka S, Kaneko Y, He J P, Arima T and Tokura Y2006 Phys. Rev. Lett. 96 207204
[52] Choi Y J, Okamoto J, Huang D J, Chao K S, Lin H J, Chen C T, vanVeenendaal M, Kaplan T A and Cheong SW2009 Phys. Rev. Lett. 102067601
[53] Lawes G, Melot B, Page K, Ederer C, Hayward M A, Proffen Th andSeshadri R 2006 Phys. Rev. B 74 024413
[54] Tokura Y 2006 Science 312 1481
[55] Yang S, Bao H X, Xue D Z, Zhou C, Gao J H,Wang Y,Wang J Q, SongX P, Sun Z B, Ren X B and Otsuka K 2012 J. Phys. D: Appl. Phys. 45265001
[56] Bord′acs S, Varjas D, K′ezsm′arki I, Mih′aly G, Baldassarre L, AbouelsayedA, Kuntscher C A, Ohgushi K and Tokura Y 2009 Phys. Rev.Lett. 103 077205
[57] Grimes N W 1972 Phil. Mag. 26 1217
[58] Hemberger J, Lunkenheimer P, Fichtl R, Krug von Nidda H A, TsurkanV and Loidl A 2005 Nature 434 364
[59] Singh K, Maignan A, Simon C and Martin C 2011 Appl. Phys. Lett. 99172903
[60] Jiang Q and Gong S J 2005 Eur. Phys. J. B 43 333
[61] Bao H X, Yang S and Ren X B 2011 J. Phys.: Conf. Series 266 012001
[62] Suzuki T and Katsufuji T 2008 Phys. Rev. B 77 220402
[63] Landau L D and Lifshitz E M 1980 Statistical Physics Vol. 5 (Oxford:Pergamon Press)
[64] Belitz D and Kirkpatrick T R 2007 Nature Phys. 3 15
[65] Loudon J C and Midgley P A 2006 Phys. Rev. Lett. 96 027214
[66] Bean C P and Rodbell D S 1962 Phys. Rev. 126 104
[67] Baker G A Jr and Essam J W 1971 J. Chem. Phys. 55 861
[68] Sak J 1974 Phys. Rev. B 10 3957
[69] Bergman D J and Halperin B I 1976 Phys. Rev. B 13 2145
[70] Preston R S 1967 Phys. Rev. Lett. 19 75
[71] Mnyukh Y Fundamentals of Solid-State Phase Transitions, Ferromagnetismand Ferroelectricity (ISBN 0-75960-219-0) or
[72] Binder K 1987 Rep. Prog. Phys. 50 783
[73] Piazza V, Pellegrini V, Beltram F, Wegscheider W, Jungwirth T andMacDonald A H 1999 Nature 402 638
[74] Rao C N R and Rao K J 1978 Phase Transitions in Solids (New York:McGraw-Hill)
[75] Yang S, Ren X B and Song XP 2008 Phys. Rev. B 78 174427
[1] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[2] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[3] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[4] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[5] Temperature-dependent structure and magnetization of YCrO3 compound
Qian Zhao(赵前), Ying-Hao Zhu(朱英浩), Si Wu(吴思), Jun-Chao Xia(夏俊超), Peng-Fei Zhou(周鹏飞), Kai-Tong Sun(孙楷橦), and Hai-Feng Li(李海峰). Chin. Phys. B, 2022, 31(4): 046101.
[6] Pressure-induced phase transition in transition metal trifluorides
Peng Liu(刘鹏), Meiling Xu(徐美玲), Jian Lv(吕健), Pengyue Gao(高朋越), Chengxi Huang(黄呈熙), Yinwei Li(李印威), Jianyun Wang(王建云), Yanchao Wang(王彦超), and Mi Zhou(周密). Chin. Phys. B, 2022, 31(10): 106104.
[7] Structure and magnetic properties of RAlSi (R=light rare earth)
Tai Wang(王泰), Yongquan Guo(郭永权), and Cong Wang(王聪). Chin. Phys. B, 2021, 30(7): 075102.
[8] Structural modulation and physical properties of cobalt-doped layered La2M5As3O2 (M= Cu, Ni) compounds
Lei Yang(杨蕾), Yan-Peng Song(宋艳鹏), Jun-Jie Wang(王俊杰), Xu Chen(陈旭), Hui-Jing Du(杜会静), and Jian-Gang Guo(郭建刚). Chin. Phys. B, 2021, 30(7): 076106.
[9] Structural and electrical transport properties of charge density wave material LaAgSb2 under high pressure
Bowen Zhang(张博文), Chao An(安超), Xuliang Chen(陈绪亮), Ying Zhou(周颖), Yonghui Zhou(周永惠), Yifang Yuan(袁亦方), Chunhua Chen(陈春华), Lili Zhang(张丽丽), Xiaoping Yang(杨晓萍), and Zhaorong Yang(杨昭荣). Chin. Phys. B, 2021, 30(7): 076201.
[10] Pressure-induced anomalous insulating behavior in frustrated iridate La3Ir3O11
Chun-Hua Chen(陈春华), Yong-Hui Zhou(周永惠), Ying Zhou(周颖), Yi-Fang Yuan(袁亦方), Chao An(安超), Xu-Liang Chen(陈绪亮), Zhao-Ming Tian(田召明), and Zhao-Rong Yang(杨昭荣). Chin. Phys. B, 2021, 30(6): 067402.
[11] Novel rubidium polyfluorides with F3, F4, and F5 species
Ziyue Lin(林子越), Hongyu Yu(于洪雨), Hao Song(宋昊), Zihan Zhang(张子涵), Tianxiao Liang(梁天笑), Mingyang Du(杜明阳), and Defang Duan(段德芳). Chin. Phys. B, 2021, 30(6): 066102.
[12] Magnetostriction and spin reorientation in ferromagnetic Laves phase Pr(GaxFe1-x)1.9 compounds
Min-Yu Zeng(曾敏玉), Qing Tang(唐庆), Zhi-Wei Mei(梅志巍), Cai-Yan Lu(陆彩燕), Yan-Mei Tang(唐妍梅), Xiang Li(李翔), Yun He(何云), and Ze-Ping Guo(郭泽平). Chin. Phys. B, 2021, 30(6): 067504.
[13] Progress in functional studies of transition metal borides
Teng Ma(马腾), Pinwen Zhu(朱品文), and Xiaohui Yu(于晓辉). Chin. Phys. B, 2021, 30(10): 108103.
[14] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[15] Quaternary antiferromagnetic Ba2BiFeS5 with isolated FeS4 tetrahedra
Shaohua Wang(王少华), Xiao Zhang(张晓), Hechang Lei(雷和畅). Chin. Phys. B, 2019, 28(8): 087401.
No Suggested Reading articles found!