Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 046102    DOI: 10.1088/1674-1056/22/4/046102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Quantitative evaluation of equatorial small-angle X-ray scattering for cylindrical fibers

Li Xiao-Yun (李小芸), Li Xiu-Hong (李秀宏), Yang Chun-Ming (杨春明), Hua Wen-Qiang (滑文强), Zhao Nie (赵镍), Miao Xia-Ran (缪夏然), Tian Feng (田丰), Wang Yu-Zhu (王玉柱), Bian Feng-Gang (边风刚), Wang Jie (王劼)
Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
Abstract  Elongated microvoids, internal fibrillar structure, and edge scattering from both surface refraction cause an equatorial streak in small angle X-ray scattering. A model for analyzing edge scattering of fibers is proposed. Simulation results indicate that the intensity of edge scattering from surface refraction of a cylindrical fiber is strong and makes an important contribution to the equatorial streak. Two factors influence edge scattering intensity. One is the sample-to-detector distance (D); edge scattering intensity increases with increasing D. The equatorial streak becomes weak when D is shortened. The other factor is the refraction index. Edge scattering intensity increases as the real component of the refraction index decreases. In experiment, weak or even no equatorial streaks were found for samples measured in a roughly index-matching fluid. Edge scattering can be eliminated or weakened, and it can be calculated by comparing the intensities of a cylindrical fiber when it is measured in air and in index-matching fluid. The simulation data are basically in agreement with the experimental data.
Keywords:  fiber      edge scattering      small angle scattering      equatorial streak  
Received:  03 September 2012      Revised:  31 October 2012      Accepted manuscript online: 
PACS:  61.05.cf (X-ray scattering (including small-angle scattering))  
  41.60.Ap (Synchrotron radiation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50903089, 10979073, 11005143, and 10979006) and the National Basic Research Program of China (Grant Nos. 2010CB934501, 2011CB606104, and 2011CB605604).
Corresponding Authors:  Wang Jie     E-mail:  wangjie@sinap.ac.cn

Cite this article: 

Li Xiao-Yun (李小芸), Li Xiu-Hong (李秀宏), Yang Chun-Ming (杨春明), Hua Wen-Qiang (滑文强), Zhao Nie (赵镍), Miao Xia-Ran (缪夏然), Tian Feng (田丰), Wang Yu-Zhu (王玉柱), Bian Feng-Gang (边风刚), Wang Jie (王劼) Quantitative evaluation of equatorial small-angle X-ray scattering for cylindrical fibers 2013 Chin. Phys. B 22 046102

[1] Hong X G, Du L C, Ye M P and Weng Y X 2004 Chin. Phys. 13 720
[2] Han F T, Chen J Z and Wang J Q 1995 Chin. Phys. 4 204
[3] Li Z H, Gong Y J, Zhang Y, Wu D, Sun Y H, Liu Y and Dong B Z 2001 Chin. Phys. 10 429
[4] Wang D H, Hao J J, Xing X Q, Mo G, Gong Y, Lü C X and Wu Z H, 2011 Chin. Phys. C 35 870
[5] Müller M, Czihak C, Vogl G, Fratzl P, Schober H and Riekel C 1998 Macromolecules 31 3953
[6] Diana G S 2006 J. Appl. Polym. Sci. 100 1067
[7] Statton W O 1962 J. Polym. Sci. 58 205
[8] Reimschuessel A C and Prevorsek D C 1976 J. Polym. Sci. Part B: Polym. Phys. 14 485
[9] Sakaoku K, Morosoff N and Peterlin A 1973 J. Polym. Sci. Part B: Polym. Phys. 11 31
[10] Thünemann A F and Ruland W 2000 Macromolecules 33 1848
[11] Perret R and Ruland W 1969 J. Appl. Crystallogr. 2 209
[12] Wang W J, Murthy S N, Chae H G and Kumar S 2009 J. Polym. Sci., Part B: Polym. Phys. 47 2394
[13] Takaku A and Shioya 1986 J. Mater. Sci. 21, 4443
[14] Kaburagi M, Bin Y Z, Zhu D, Xu C Y and Matsuo M 2003 Carbon 41 915
[15] Jiang G S, Huang W F, Li L, Wang X, Pang F J, Zhang Y M and Wang H P 2012 Carbohydrate Polymers 87 2012
[16] Jiang G S, Yuan Y, Wang B C, Yin X M, Mukuze K S, Huang W F, Zhang Y M and Wang H P 2012 Cellulose 19 1075
[17] Janosi A, Grosse I and Hermel G 1996 Mon. Chem. 127 143
[18] Kitagawa T, Murase H and Yabuki K 1998 J. Polym. Sci.: Part B: Polym. Phys. 36 39
[19] Grubb D T, Prasad K and Adams W 1991 Polymer. 32 1167
[20] Ran S F, Fang D F, Zong X, Hsiao B S, Chu B and Cunniff P M 2001 Polymer 42 1601
[21] Ran S F, Zong X, Fang D F, Hsiao B S, Chu B, Cunniff P M and Phillips R A 2001 J. Mater. Sci. 36 3071
[22] Wu J, Schultz J M, Yeh F J, Hsiao B S and Chu B 2000 Macromolecules 33 1765
[23] Grubb D T and Murthy N S 2010 Macromolecules 43 1016
[24] Davies R J, Koenig C, Burghammer M and Riekel C 2008 Appl. Phys. Lett. 92 101903
[25] Li X Y, Li X H, Wang Y Z and Wang J 2011 Adv. Mater. Res. 332-334 1171
[26] Hentschel M P, Hosemann R, Lange A and Bruckner R 1987 Acta Crystallogr. A43 506
[27] Harbich K W, Klobes P and Hentschel M P 2004 Colloids and Surface A: Physicochem. Eng. Aspects 241 225
[28] Gupta A, Harrsion I R and Lahijani J 1994 J. Appl. Crystallogr 27 627
[29] http://henke.lbl.gov/optical_constants/getdb2.html
[30] Rungswang W, Kotaki M, Shimojima T, Kimura G, Sakurai S and Chirachanchai S 2011 Polymer 52 844
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[3] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[4] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[5] Wavelength switchable mode-locked fiber laser with a few-mode fiber filter
Shaokang Bai(白少康), Yujin Xiang(向昱锦), and Zuxing Zhang(张祖兴). Chin. Phys. B, 2023, 32(2): 024209.
[6] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[7] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[8] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[9] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[10] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[11] Optoelectronic oscillator-based interrogation system for Michelson interferometric sensors
Ling Liu(刘玲), Xiaoyan Wu(吴小龑), Guodong Liu(刘国栋), Tigang Ning(宁提纲),Jian Xu(许建), and Haidong You(油海东). Chin. Phys. B, 2022, 31(9): 090702.
[12] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[13] A radiation-temperature coupling model of the optical fiber attenuation spectrum in the Ge/P co-doped fiber
Yong Li(李勇), Haoshi Zhang(张浩石), Xiaowei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(7): 074211.
[14] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[15] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
No Suggested Reading articles found!