Progress in functional studies of transition metal borides
Teng Ma(马腾)1,2, Pinwen Zhu(朱品文)1,†, and Xiaohui Yu(于晓辉)2,‡
1 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China; 2 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract In recent years, transition metal borides (TMBs) have attracted much attention because they are considered as potential superhard materials and have more abundant crystal structures compared with traditional superhard materials. So far, however, no superhard materials have been found in TMBs. A large number of structures and potential new properties in TMBs are induced by the various hybridization ways of boron atoms and the high valence electrons of transition metals, which provide many possibilities for its application. And most TMBs have layered structures, which make TMBs have the potential to be a two-dimensional (2D) material. The 2D materials have novel properties, but the research on 2D TMBs is still nearly blank. In this paper, the research progress of TMBs is summarized involving structure, mechanical properties, and multifunctional properties. The strong covalent bonds of boron atoms in TMBs can form one-dimensional, two-dimensional, and three-dimensional substructures, and the multiple electron transfer between transition metal and boron leads to a variety of chemical bonds in TMBs, which are the keys to obtain high hardness and multifunctional properties of TMBs. Further research on the multifunctional properties of TMBs, such as superconductors, catalysts, and high hardness ferromagnetic materials, is of great significance to the discovery of new multifunctional hard materials.
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0401503 and 2018YFA0305700), the National Natural Science Foundation of China (Grant No. 11575288), the Strategic Priority Research Program and Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant Nos. XDB33000000, XDB25000000, and QYZDBSSW-SLH013), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. Y202003).
Teng Ma(马腾), Pinwen Zhu(朱品文), and Xiaohui Yu(于晓辉) Progress in functional studies of transition metal borides 2021 Chin. Phys. B 30 108103
[1] Jhi S, Ihm J, Louie S G and Cohen M L 1999 Nature399 132 [2] Ivanovskii A L 2011 J. Superhard Mater.33 73 [3] Yeung M T, Mohammadi R and Kaner R B 2016 Ann. Rev. Mater. Res.46 465 [4] Kaner R B, Gilman J J and Tolbert S H 2005 Science308 1268 [5] Zhou C T, Xing J D, Xiao B, Feng J, Xie X J and Chen Y H 2009 Comp. Mater. Sci.44 1056 [6] Iyer A K, Zhang Y, Scheifers J P et al. 2019 J. Solid State Chem.270 618 [7] Han L, Wang S M, Zhu J L, et al. 2015 Appl. Phys. Lett.106 221902 [8] Jeffries J B and Hershkowitz N 1969 Phys. Lett. A30 187 [9] Tao Q, Chen Y L, Lian M, Xu C H, Li L, Feng X K, Wang X, Cui T, Zheng W T and Zhu P W 2018 Chem. Mater.31 200 [10] Vajeeston P, Ravindran P, Ravi C and Asokamani R 2001 Phys. Rev. B63 045115 [11] Tao Q, Ma Y M, Li Y, Chen Y L, Ma Y M, Cui T, Wang X and Zhu P W 2013 RSC Adv.4 52878 [12] Frotscher M, Hölzel M and Albert B 2010 Z. Anorg. Allg. Chem.636 1783 [13] Wang D Y, Wang B and Wang Y X 2012 J. Phys. Chem. C116 21961 [14] La Placa S J and Post B 1962 Acta Crystallogr.15 97 [15] Zhou W, Wu H and Yildirim T 2007 Phys. Rev. B76 184113 [16] Zhao E J, Wang J P, Meng J and Wu Z J 2010 J. Comput. Chem.31 1904 [17] Xie M, Winkler B, Mao Z, Kaner R B, Kavner A and Tolbert S H 2014 Appl. Phys. Lett.104 011904 [18] Koumoulis D, Turner C L, Taylor R E and Kaner R B 2016 J. Phys. Chem. C120 2901 [19] Deligoz E, Colakoglu K and Ciftci Y O 2012 Chin. Phys. B21 106301 [20] Chung H Y, Weinberger M B, Levine J B, Cumberland R W, Kavner A, Yang J M, Tolbert S H and Kaner R B 2007 Science316 436 [21] Wang B, Li X, Wang Y X and Tu Y F 2011 J. Phys. Chem. C115 21429 [22] Aydin S and Simsek M 2009 Phys. Rev. B80 134107 [23] Ma S L, Bao K, Tao Q, Xu C H, Feng X D, Zhu P W and Cui T 2016 Inorg. Chem.55 11140 [24] Zhang M G, Wang H, Wang H B, Cui T and Ma Y M 2010 J. Phys. Chem. C114 6722 [25] Liang Y C, Yuan X, Fu Z, Li Y and Zhong Z 2012 Appl. Phys. Lett.101 181908 [26] Liang Y C, Wu Z B, Yuan X, Zhang W Q and Zhang P H 2016 Nanoscale8 1055 [27] Rybkovskiy D V, Kvashnin A G, Kvashnina Y A and Oganov A R 2020 J. Phys. Chem. Lett.11 2393 [28] Higashi I, Takahashi Y and Okada S 1986 J. Less-Common Met.123 277 [29] Klesnar H, Aselage T L, Morosin B and Kwei G H 1996 J. Alloys Compd.241 180 [30] Okada S, Atoda T, Higashi I and Takahashi Y 1987 J. Mater. Sci.22 2993 [31] Woods H P, Wawner F E, Jr. and Fox B G 1966 Science151 75 [32] Okada S, Kudou K and Lundström T 1995 Jpn. J. Appl. Phys.34 226 [33] Chen X Q, Fu C L, Krcmar M and Painter G S 2008 Phys. Rev. Lett.100 196403 [34] Jiang C L, Pei Z L, Liu Y M, Xiao J Q, Gong J and Sun C 2013 Phys. Status Solidi A Appl. Mater.210 1221 [35] Lech A T, Turner C L, Lei J, Mohammadi R, Tolbert S H and Kaner R B 2016 J. Am. Chem. Soc.138 14398 [36] Liu Y M, Han R Q, Liu F, Pei Z L and Sun C 2017 J. Alloys Compd.703 188 [37] Turner C L, Zujovic Z, Koumoulis D, Taylor R E and Kaner R B 2017 J. Phys. Chem. C121 1315 [38] Henschel A, Binnewies M, Schmidt M, Köppe R, Burkhardt U and Grin Y 2018 Chem-Eur. J.24 10109 [39] Long Y, Wu Z, Zheng X, Lin H T and Zhang F L 2019 J. Am. Ceram. Soc.103 831 [40] Ma K, Xue X X and Cao X Z 2019 Int. J. Appl. Ceram. Tec.17 1177 [41] Che J T, Long Y, Zheng X, Lin H T and Plucknett K 2019 Mater. Chem. Phys.237 121848 [42] Armas B and Trombe F 1973 Solar Energy15 67 [43] Stadler S, Winarski R P, MacLaren J M, Ederer D L, vanEk J, Moewes A, Grush M M, Callcott T A and Perera R C C 2000 J. Electron Spectrosc.110-111 75 [44] Feng S Q, Yang Y, Li J Y, Jiang X X, Li H N and Cheng X L 2017 Mod. Phys. Lett. B31 1750137 [45] Frotscher M, Klein W, Bauer J, Fang C M, Halet J F, Senyshyn A, Baehtz C and Albert B 2007 Z. Anorg. Allg. Chem.633 2626 [46] Knappschneider A, Litterscheid C, Kurzman J, Seshadri R and Albert B 2011 Inorg. Chem.50 10540 [47] Gou H Y, Li Z P, Niu H, Gao F M, Zhang J W, Ewing R C and Lian J 2012 Appl. Phys. Lett.100 111907 [48] Niu H Y, Wang J Q, Chen X Q, Li D Z, Li Y Y, Lazar P, Podloucky R and Kolmogorov A N 2012 Phys. Rev. B85 144116 [49] Knappschneider A, Litterscheid C, Dzivenko D, Kurzman J A, Seshadri R, Wagner N, Beck J, Riedel R and Albert B 2013 Inorg. Chem.52 540 [50] Li B, Sun H, Zang C P and Chen C F 2013 Phys. Rev. B87 174106 [51] Zhao W J and Xu B 2012 Comp. Mater. Sci.65 372 [52] Niu H Y, Chen X Q, Ren W J, Zhu Q, Oganov A R, Li D Z and Li Y Y 2014 Phys. Chem. Chem. Phys.16 15866 [53] Ding L P, Kuang X Y, Shao P and Huang X F 2014 Inorg. Chem.53 3471 [54] Wang Q Q, Zhang Q, Hu M, Ma M D, Xu B and He J L 2014 Phys. Chem. Chem. Phys.16 22008 [55] Andersson S, Lundström T, Andresen A F and Pearson W B 1968 Acta Chem. Scand.22 3103 [56] Wang B, Wang D Y, Cheng Z X, Wang X L and Wang Y X 2013 ChemPhysChem14 1245 [57] Li X H, Cui H L and Zhang R Z 2017 Chin. Phys. B26 096201 [58] Wang S M, Yu X H, Zhang J, Zhang Y, Wang L P, Leinenweber K, Xu H W, Popov D, Park C, Yang W, He D W and Zhao Y S 2014 J. Superhard Mater.36 279 [59] Wang Q Q, He J L, Hu W T, Zhao Z S, Zhang C, Luo K, Lü Y F, Hao C X, Lü W M, Liu Z Y, Yu D L, Tian Y J and Xu B 2015 J. Materiomics1 45 [60] Kolmogorov A N, Shah S, Margine E R, Bialon A F, Hammerschmidt T and Drautz R 2010 Phys. Rev. Lett.105 217003 [61] Andersson S, Carlsson J O, Astrup E E, Liaaen-Jensen S, Lamvik A, Sunde E and Sorensen N A 1970 Acta Chem. Scand.24 1791 [62] Litterscheid C, Knappschneider A and Albert B 2012 Z. Anorg. Allg. Chem.638 1608 [63] Knappschneider A, Litterscheid C, George N C, Brgoch J, Wagner N, Beck J, Kurzman J A, Seshadri R and Albert B 2014 Angew. Chem. Int. Ed.53 1684 [64] Gou H Y, Tsirlin A A, Bykova E, Abakumov A M, Van Tendeloo G, Richter A, Ovsyannikov S V, Kurnosov A V, Trots D M, Konôpková Z, Liermann H P, Dubrovinsky L and Dubrovinskaia N 2014 Phys. Rev. B89 064108 [65] Liang Y C, Yuan X and Zhang W Q 2011 Phys. Rev. B83 220102 [66] Duschanek H and Rogl P 1995 J. Phase Equilib.16 150 [67] Zhang R F, Legut D, Lin Z J, Zhao Y S, Mao H K and Veprek S 2012 Phys. Rev. Lett.108 255502 [68] Cheng X Y, Chen X Q, Li D Z and Li Y Y 2014 Acta Crystallogr. C Struct. Chem.70 85 [69] Li Q, Zhou D, Zheng W T, Ma Y M and Chen C F 2013 Phys. Rev. Lett.110 136403 [70] Cheng X Y, Zhang W, Chen X Q, Niu H Y, Liu P T, Du K, Liu G, Li D Z, Cheng H M, Ye H Q and Li Y Y 2013 Appl. Phys. Lett.103 171903 [71] Zeiringer I, Rogl P, Grytsiv A, Polt J, Bauer E and Giester G 2014 J. Phase Equilib. Diff.35 384 [72] Kiessling R, Wetterholm A, Sillén L G, Linnasalmi A and Laukkanen P 1947 Acta Chem. Scand.1 893 [73] Lundström T and Rosenberg I 1973 J. Solid State Chem.6 299 [74] Wang B, Wang D Y and Wang Y X 2013 J. Alloys Compd.573 20 [75] Troć R, Wawryk R, Pikul A and Shitsevalova N 2015 Philos. Mag.95 2343 [76] Peshev P, Etourneau J and Naslain R 1970 Mater. Res. Bull.5 319 [77] Hao X F, Xu Y H, Wu Z J, Zhou D F, Liu X J, Cao X Q and Meng J 2006 Phys. Rev. B74 224112 [78] Levine J B, Nguyen S L, Rasool H I, Wright J A, Brown S E and Kaner R B 2008 J. Am. Chem. Soc.130 16953 [79] Gu Q F, Krauss G and Steurer W 2008 Adv. Mater.20 3620 [80] Qin J Q, He D W, Wang J H, Fang L M, Lei L, Li Y J, Hu J, Kou Z L and Bi Y 2008 Adv. Mater.20 4780 [81] Yang J, Gao, F M and Liu Y S 2017 Chin. Phys. B26 106202 [82] Levine J B, Betts J B, Garrett J D, Guo S Q, Eng J T, Migliori A and Kaner R B 2010 Acta Mater.58 1530 [83] Chung H Y, Yang J M, Tolbert S H and Kaner R B 2008 J. Mater. Res.23 1797 [84] Hebbache M, Stuparević L and Živković D 2006 Solid State Commun.139 227 [85] Chung H Y, Weinberger M B, Yang J M, Tolbert S H and Kaner R B 2008 Appl. Phys. Lett.92 261904 [86] Chiodo S, Gotsis H J, Russo N and Sicilia E 2006 Chem. Phys. Lett.425 311 [87] Chen Z Y, Xiang H J, Yang J, Hou J G and Zhu Q 2006 Phys. Rev. B74 012102 [88] Gou H Y, Hou L, Zhang J W, Li H, Sun G F and Gao F M 2006 Appl. Phys. Lett.88 221904 [89] Yang J, Sun H and Chen C F 2008 J. Am. Chem. Soc.130 7200 [90] Luo X G, Li J P, Hu P and Dong S L 2010 Sci. China Technol. Sci.53 1877 [91] Ivanovskii A L 2012 Inorg. Mater.3 319 [92] Cumberland R W, Weinberger M B, Gilman J J, Clark S M, Tolbert S H and Kaner R B 2005 J. Am. Chem. Soc.127 7264 [93] Aronsson B, Leden I, Sunner S, Hatanaka A and Munch-Petersen J 1963 Acta Chem. Scand.17 2036 [94] Ma S L, Bao K, Tao Q, Zhu P W, Ma T, Liu B, Liu Y Z and Cui T 2017 Sci. Rep.7 43759 [95] Ma S L, Bao K, Tao Q, Xu C H, Feng X K, Zhao X B, Ge Y F, Zhu P W and Cui T 2019 Phys. Chem. Chem. Phys.21 2697 [96] Mohammadi R, Lech A T, Xie M, Weaver B E, Yeung M T, Tolbert S H and Kaner R B 2011 Proc. Natl. Acad. Sci.108 10958 [97] Mohammadi R, Xie M, Lech A T, Turner C L, Kavner A, Tolbert S H and Kaner R B 2012 J. Am. Chem. Soc.134 20660 [98] Zang C P, Sun H, Tse J S and Chen C F 2012 Phys. Rev. B86 014108 [99] Zang C P, Sun H and Chen C F 2012 Phys. Rev. B86 180101 [100] Tao Q, Zheng D F, Zhao X P, Chen Y L, Li Q, Li Q, Wang C C, Cui T, Ma Y M, Wang X and Zhu P W 2014 Chem. Mater.26 5297 [101] Ma S L, Bao K, Tao Q, Huang Y P, Xu C C, Li L, Feng X K, Zhao X B, Zhu P W and Cui T 2019 Int. J. Refractory Metals Hard Mater.85 104845 [102] Gou H Y, Dubrovinskaia N, Bykova E, Tsirlin A A, Kasinathan D, Schnelle W, Richter A, Merlini M, Hanfland M, Abakumov A M, Batuk D, Van Tendeloo G, Nakajima Y, Kolmogorov A N and Dubrovinsky L 2013 Phys. Rev. Lett.111 157002 [103] Ma T, Li H, Zheng X, Wang S M, Wang X C, Zhao H Z, Han S B, Liu J, Zhang R F, Zhu P W, Long Y W, Cheng J G, Ma Y M, Zhao Y S, Jin C Q and Yu X H 2017 Adv. Mater.29 1604003 [104] Akopov G, Yeung M T, Sobell Z C, Turner C L, Lin C W and Kaner R B 2016 Chem. Mater.28 6605 [105] Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y and Akimitsu J 2001 Nature410 63 [106] Gasparov V A, Sidorov N S, Zver'kova I I and Kulakov M P 2001 JETP Lett.73 532 [107] Escamilla R, Lovera O, Akachi T, Durán A, Falconi R, Morales F and Escudero R 2004 J. Phys.: Condens. Matter16 5979 [108] Mudgel M, Awana V P S, Bhalla G L and Kishan H 2008 Solid State Commun.147 439 [109] Cooper A S, Corenzwit E, Longinotti L D, Matthias B T and Zachariasen W H 1970 Proc. Natl. Acad. Sci.67 313 [110] Tang H, Gao X, Zhang J, Gao B, Zhou W J, Yan B M, Li X, Zhang Q H, Peng S, Huang D J, Zhang L J, Yuan X H, Wan B, Peng C, Wu L L, Zhang D Z, Liu H Y, Gu L, Gao F M, Irifune T, Ahuja R, Mao H K and Gou H Y 2019 Chem. Mater.32 459 [111] Simonson J W, Wu D, Poon S J and Wolf S A 2010 J. Supercond. Nov. Magn.23 417 [112] Renosto S T, Consoline H, dos Santos C A M, Albino Aguiar J, Jung S G, Vanacken J, Moshchalkov V V, Fisk Z and Machado A J S 2013 Phys. Rev. B87 174502 [113] Jung S G, Vanacken J, Moshchalkov V V, Renosto S T, dos Santos C A M, Machado A J S, Fisk Z and Albino Aguiar J 2013 J. Appl. Phys.114 133905 [114] Matthias B T, Geballe T H, Andres K, Corenzwit E, Hull G W and Maita J P 1968 Science159 530 [115] Shein I R and Ivanovskii A L 2003 Phys. Solid State45 1429 [116] Jäger B, Paluch S, ŻogałO J, Wolf W, Herzig P, Filippov V B, Shitsevalova N and Paderno Y 2006 J. Phys.: Condens. Matter18 2525 [117] Lortz R, Wang Y, Abe S, Meingast C, Paderno Y B, Filippov V and Junod A 2005 Phys. Rev. B72 024547 [118] Wang Y X, Lortz R, Paderno Y, Filippov V, Abe S, Tutsch U and Junod A 2005 Phys. Rev. B72 024548 [119] Gasparov V A, Sidorov N S and Zver'kova I I 2006 Phys. Rev. B73 094510 [120] Ge J Y, Gladilin V N, Sluchanko N E, Lyashenko A, Filipov V B, Indekeu J O and Moshchalkov V V 2017 New J. Phys.19 093020 [121] Park H, Encinas A, Scheifers J P, Zhang Y and Fokwa B P T 2017 Angew. Chem. Int. Ed.56 5575 [122] Jothi P R, Zhang Y, Scheifers J P, Park H and Fokwa B P T 2017 Sustain. Energy Fuels1 1928 [123] Chen Z J, Duan X G, Wei W, Wang S B, Zhang Z J and Ni B J 2020 Nano Res.13 293 [124] Chen H and Zou X X 2020 Inorg. Chem. Front.7 2248 [125] Chen Y L, Yu G T, Chen W, Liu Y P, Li G D, Zhu P W, Tao Q, Li Q J, Liu J W, Shen X P, Li H, Huang X R, Wang D J, Asefa T and Zou X X 2017 J. Am. Chem. Soc.139 12370 [126] Wang Y, Mayorga-Martinez C C, Chia X, Sofer Z, Mohamad Latiff N and Pumera M 2019 ACS Sustainable Chem. Eng.7 12148 [127] Li Q J, Wang L N, Ai X, Chen H, Zou J Y, Li G D and Zou X X 2020 Chem. Commun.56 13983 [128] Li X, Li Y, Wei Y H, Hou L F, Liu B S, Qu H B and Wang Y D 2018 J. Iron Steel Res. Int.25 923 [129] Amano T, Okazaki M, Takezawa Y, Shiino A, Takeda M, Onishi T, Seto K, Ohkubo A and Shishido T 2006 Mater. Sci. Forum522-523 469 [130] Matsui I, Mori H, Kawakatsu T, Takigawa Y, Uesugi T and Higashi K 2014 Mater. Sci. Eng. A607 505 [131] Zhao X B, Li L, Bao K, Zhu P W, Tao Q, Ma S L, Liu B, Ge Y F, Li D and Cui T 2020 Phys. Chem. Chem. Phys.22 27425 [132] Rahman M, Wang C C, Chen W, Akbar S A and Mroz C 1995 J. Am. Ceram. Soc.78 1380 [133] Fahrenholtz W G, Binner J and Zou J 2016 J. Mater. Res.31 2757 [134] Kravchenko S E, Kovalev D Y, Korobov I I, Kalinnikov G V, Konovalikhin S V, Khomenko N Y and Shilkin S P 2019 Inorg. Mater.55 458 [135] Inoue R, Arai Y, Kubota Y, Kogo Y and Goto K 2018 J. Mater. Sci.53 14885 [136] Kinoshita H, Otani S, Kamiyama S, Amano H, Akasaki I, Suda J and Matsunami H 2001 Jpn. J. Appl. Phys.40 L1280 [137] Lonergan J M, Fahrenholtz W G, Hilmas G E and Trice R 2014 J. Am. Ceram. Soc.97 1689 [138] Neuman E W, Hilmas G E, Fahrenholtz W G and Dominguez-Rodriguez A 2013 J. Am. Ceram. Soc.96 47 [139] Cely A, Tergenius L E and Lundstrom T 1978 J. Less-Common Met.61 193 [140] Akopov G, Roh I, Sobell Z C, Yeung M T and Kaner R B 2018 Dalton Trans.47 6683 [141] Otani S and Ohsawa T 1999 J. Cryst. Growth200 472 [142] Werheit H, Filipov V, Shirai K, Dekura H, Shitsevalova N, Schwarz U and Armbruster M 2011 J. Phys.: Condens. Matter23 065403 [143] Liu Z T, Wei Y N, Meng X, Wei T T and Ran S L 2017 Ceram. Int.43 1628 [144] Rao L, Gillan E G and Kaner R B 1995 J. Mater. Res.10 353 [145] McKenna P M 1936 Ind. Eng. Chem.28 767 [146] Zhao H, He Y and Jin Z Z 1995 J. Am. Ceram. Soc.78 2534 [147] Chen L Y, Gu Y L, Yang Z H, Shi L, Ma J H and Qian Y T 2004 Scr. Mater.50 959 [148] Alameda L T, Moradifar P, Metzger Z P, Alem N and Schaak R E 2018 J. Am. Chem. Soc.140 8833
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.