Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 108103    DOI: 10.1088/1674-1056/ac1925
REVIEW Prev   Next  

Progress in functional studies of transition metal borides

Teng Ma(马腾)1,2, Pinwen Zhu(朱品文)1,†, and Xiaohui Yu(于晓辉)2,‡
1 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China;
2 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  In recent years, transition metal borides (TMBs) have attracted much attention because they are considered as potential superhard materials and have more abundant crystal structures compared with traditional superhard materials. So far, however, no superhard materials have been found in TMBs. A large number of structures and potential new properties in TMBs are induced by the various hybridization ways of boron atoms and the high valence electrons of transition metals, which provide many possibilities for its application. And most TMBs have layered structures, which make TMBs have the potential to be a two-dimensional (2D) material. The 2D materials have novel properties, but the research on 2D TMBs is still nearly blank. In this paper, the research progress of TMBs is summarized involving structure, mechanical properties, and multifunctional properties. The strong covalent bonds of boron atoms in TMBs can form one-dimensional, two-dimensional, and three-dimensional substructures, and the multiple electron transfer between transition metal and boron leads to a variety of chemical bonds in TMBs, which are the keys to obtain high hardness and multifunctional properties of TMBs. Further research on the multifunctional properties of TMBs, such as superconductors, catalysts, and high hardness ferromagnetic materials, is of great significance to the discovery of new multifunctional hard materials.
Keywords:  transition metal borides      crystal structure      hardness      multifunctional properties  
Received:  19 May 2021      Revised:  20 July 2021      Accepted manuscript online:  30 July 2021
PACS:  81.05.Je (Ceramics and refractories (including borides, carbides, hydrides, nitrides, oxides, and silicides))  
  71.20.Be (Transition metals and alloys)  
  91.60.Ed (Crystal structure and defects, microstructure)  
  62.20.-x (Mechanical properties of solids)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0401503 and 2018YFA0305700), the National Natural Science Foundation of China (Grant No. 11575288), the Strategic Priority Research Program and Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant Nos. XDB33000000, XDB25000000, and QYZDBSSW-SLH013), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. Y202003).
Corresponding Authors:  Pinwen Zhu, Xiaohui Yu     E-mail:;

Cite this article: 

Teng Ma(马腾), Pinwen Zhu(朱品文), and Xiaohui Yu(于晓辉) Progress in functional studies of transition metal borides 2021 Chin. Phys. B 30 108103

[1] Jhi S, Ihm J, Louie S G and Cohen M L 1999 Nature 399 132
[2] Ivanovskii A L 2011 J. Superhard Mater. 33 73
[3] Yeung M T, Mohammadi R and Kaner R B 2016 Ann. Rev. Mater. Res. 46 465
[4] Kaner R B, Gilman J J and Tolbert S H 2005 Science 308 1268
[5] Zhou C T, Xing J D, Xiao B, Feng J, Xie X J and Chen Y H 2009 Comp. Mater. Sci. 44 1056
[6] Iyer A K, Zhang Y, Scheifers J P et al. 2019 J. Solid State Chem. 270 618
[7] Han L, Wang S M, Zhu J L, et al. 2015 Appl. Phys. Lett. 106 221902
[8] Jeffries J B and Hershkowitz N 1969 Phys. Lett. A 30 187
[9] Tao Q, Chen Y L, Lian M, Xu C H, Li L, Feng X K, Wang X, Cui T, Zheng W T and Zhu P W 2018 Chem. Mater. 31 200
[10] Vajeeston P, Ravindran P, Ravi C and Asokamani R 2001 Phys. Rev. B 63 045115
[11] Tao Q, Ma Y M, Li Y, Chen Y L, Ma Y M, Cui T, Wang X and Zhu P W 2013 RSC Adv. 4 52878
[12] Frotscher M, Hölzel M and Albert B 2010 Z. Anorg. Allg. Chem. 636 1783
[13] Wang D Y, Wang B and Wang Y X 2012 J. Phys. Chem. C 116 21961
[14] La Placa S J and Post B 1962 Acta Crystallogr. 15 97
[15] Zhou W, Wu H and Yildirim T 2007 Phys. Rev. B 76 184113
[16] Zhao E J, Wang J P, Meng J and Wu Z J 2010 J. Comput. Chem. 31 1904
[17] Xie M, Winkler B, Mao Z, Kaner R B, Kavner A and Tolbert S H 2014 Appl. Phys. Lett. 104 011904
[18] Koumoulis D, Turner C L, Taylor R E and Kaner R B 2016 J. Phys. Chem. C 120 2901
[19] Deligoz E, Colakoglu K and Ciftci Y O 2012 Chin. Phys. B 21 106301
[20] Chung H Y, Weinberger M B, Levine J B, Cumberland R W, Kavner A, Yang J M, Tolbert S H and Kaner R B 2007 Science 316 436
[21] Wang B, Li X, Wang Y X and Tu Y F 2011 J. Phys. Chem. C 115 21429
[22] Aydin S and Simsek M 2009 Phys. Rev. B 80 134107
[23] Ma S L, Bao K, Tao Q, Xu C H, Feng X D, Zhu P W and Cui T 2016 Inorg. Chem. 55 11140
[24] Zhang M G, Wang H, Wang H B, Cui T and Ma Y M 2010 J. Phys. Chem. C 114 6722
[25] Liang Y C, Yuan X, Fu Z, Li Y and Zhong Z 2012 Appl. Phys. Lett. 101 181908
[26] Liang Y C, Wu Z B, Yuan X, Zhang W Q and Zhang P H 2016 Nanoscale 8 1055
[27] Rybkovskiy D V, Kvashnin A G, Kvashnina Y A and Oganov A R 2020 J. Phys. Chem. Lett. 11 2393
[28] Higashi I, Takahashi Y and Okada S 1986 J. Less-Common Met. 123 277
[29] Klesnar H, Aselage T L, Morosin B and Kwei G H 1996 J. Alloys Compd. 241 180
[30] Okada S, Atoda T, Higashi I and Takahashi Y 1987 J. Mater. Sci. 22 2993
[31] Woods H P, Wawner F E, Jr. and Fox B G 1966 Science 151 75
[32] Okada S, Kudou K and Lundström T 1995 Jpn. J. Appl. Phys. 34 226
[33] Chen X Q, Fu C L, Krcmar M and Painter G S 2008 Phys. Rev. Lett. 100 196403
[34] Jiang C L, Pei Z L, Liu Y M, Xiao J Q, Gong J and Sun C 2013 Phys. Status Solidi A Appl. Mater. 210 1221
[35] Lech A T, Turner C L, Lei J, Mohammadi R, Tolbert S H and Kaner R B 2016 J. Am. Chem. Soc. 138 14398
[36] Liu Y M, Han R Q, Liu F, Pei Z L and Sun C 2017 J. Alloys Compd. 703 188
[37] Turner C L, Zujovic Z, Koumoulis D, Taylor R E and Kaner R B 2017 J. Phys. Chem. C 121 1315
[38] Henschel A, Binnewies M, Schmidt M, Köppe R, Burkhardt U and Grin Y 2018 Chem-Eur. J. 24 10109
[39] Long Y, Wu Z, Zheng X, Lin H T and Zhang F L 2019 J. Am. Ceram. Soc. 103 831
[40] Ma K, Xue X X and Cao X Z 2019 Int. J. Appl. Ceram. Tec. 17 1177
[41] Che J T, Long Y, Zheng X, Lin H T and Plucknett K 2019 Mater. Chem. Phys. 237 121848
[42] Armas B and Trombe F 1973 Solar Energy 15 67
[43] Stadler S, Winarski R P, MacLaren J M, Ederer D L, vanEk J, Moewes A, Grush M M, Callcott T A and Perera R C C 2000 J. Electron Spectrosc. 110-111 75
[44] Feng S Q, Yang Y, Li J Y, Jiang X X, Li H N and Cheng X L 2017 Mod. Phys. Lett. B 31 1750137
[45] Frotscher M, Klein W, Bauer J, Fang C M, Halet J F, Senyshyn A, Baehtz C and Albert B 2007 Z. Anorg. Allg. Chem. 633 2626
[46] Knappschneider A, Litterscheid C, Kurzman J, Seshadri R and Albert B 2011 Inorg. Chem. 50 10540
[47] Gou H Y, Li Z P, Niu H, Gao F M, Zhang J W, Ewing R C and Lian J 2012 Appl. Phys. Lett. 100 111907
[48] Niu H Y, Wang J Q, Chen X Q, Li D Z, Li Y Y, Lazar P, Podloucky R and Kolmogorov A N 2012 Phys. Rev. B 85 144116
[49] Knappschneider A, Litterscheid C, Dzivenko D, Kurzman J A, Seshadri R, Wagner N, Beck J, Riedel R and Albert B 2013 Inorg. Chem. 52 540
[50] Li B, Sun H, Zang C P and Chen C F 2013 Phys. Rev. B 87 174106
[51] Zhao W J and Xu B 2012 Comp. Mater. Sci. 65 372
[52] Niu H Y, Chen X Q, Ren W J, Zhu Q, Oganov A R, Li D Z and Li Y Y 2014 Phys. Chem. Chem. Phys. 16 15866
[53] Ding L P, Kuang X Y, Shao P and Huang X F 2014 Inorg. Chem. 53 3471
[54] Wang Q Q, Zhang Q, Hu M, Ma M D, Xu B and He J L 2014 Phys. Chem. Chem. Phys. 16 22008
[55] Andersson S, Lundström T, Andresen A F and Pearson W B 1968 Acta Chem. Scand. 22 3103
[56] Wang B, Wang D Y, Cheng Z X, Wang X L and Wang Y X 2013 ChemPhysChem 14 1245
[57] Li X H, Cui H L and Zhang R Z 2017 Chin. Phys. B 26 096201
[58] Wang S M, Yu X H, Zhang J, Zhang Y, Wang L P, Leinenweber K, Xu H W, Popov D, Park C, Yang W, He D W and Zhao Y S 2014 J. Superhard Mater. 36 279
[59] Wang Q Q, He J L, Hu W T, Zhao Z S, Zhang C, Luo K, Lü Y F, Hao C X, Lü W M, Liu Z Y, Yu D L, Tian Y J and Xu B 2015 J. Materiomics 1 45
[60] Kolmogorov A N, Shah S, Margine E R, Bialon A F, Hammerschmidt T and Drautz R 2010 Phys. Rev. Lett. 105 217003
[61] Andersson S, Carlsson J O, Astrup E E, Liaaen-Jensen S, Lamvik A, Sunde E and Sorensen N A 1970 Acta Chem. Scand. 24 1791
[62] Litterscheid C, Knappschneider A and Albert B 2012 Z. Anorg. Allg. Chem. 638 1608
[63] Knappschneider A, Litterscheid C, George N C, Brgoch J, Wagner N, Beck J, Kurzman J A, Seshadri R and Albert B 2014 Angew. Chem. Int. Ed. 53 1684
[64] Gou H Y, Tsirlin A A, Bykova E, Abakumov A M, Van Tendeloo G, Richter A, Ovsyannikov S V, Kurnosov A V, Trots D M, Konôpková Z, Liermann H P, Dubrovinsky L and Dubrovinskaia N 2014 Phys. Rev. B 89 064108
[65] Liang Y C, Yuan X and Zhang W Q 2011 Phys. Rev. B 83 220102
[66] Duschanek H and Rogl P 1995 J. Phase Equilib. 16 150
[67] Zhang R F, Legut D, Lin Z J, Zhao Y S, Mao H K and Veprek S 2012 Phys. Rev. Lett. 108 255502
[68] Cheng X Y, Chen X Q, Li D Z and Li Y Y 2014 Acta Crystallogr. C Struct. Chem. 70 85
[69] Li Q, Zhou D, Zheng W T, Ma Y M and Chen C F 2013 Phys. Rev. Lett. 110 136403
[70] Cheng X Y, Zhang W, Chen X Q, Niu H Y, Liu P T, Du K, Liu G, Li D Z, Cheng H M, Ye H Q and Li Y Y 2013 Appl. Phys. Lett. 103 171903
[71] Zeiringer I, Rogl P, Grytsiv A, Polt J, Bauer E and Giester G 2014 J. Phase Equilib. Diff. 35 384
[72] Kiessling R, Wetterholm A, Sillén L G, Linnasalmi A and Laukkanen P 1947 Acta Chem. Scand. 1 893
[73] Lundström T and Rosenberg I 1973 J. Solid State Chem. 6 299
[74] Wang B, Wang D Y and Wang Y X 2013 J. Alloys Compd. 573 20
[75] Troć R, Wawryk R, Pikul A and Shitsevalova N 2015 Philos. Mag. 95 2343
[76] Peshev P, Etourneau J and Naslain R 1970 Mater. Res. Bull. 5 319
[77] Hao X F, Xu Y H, Wu Z J, Zhou D F, Liu X J, Cao X Q and Meng J 2006 Phys. Rev. B 74 224112
[78] Levine J B, Nguyen S L, Rasool H I, Wright J A, Brown S E and Kaner R B 2008 J. Am. Chem. Soc. 130 16953
[79] Gu Q F, Krauss G and Steurer W 2008 Adv. Mater. 20 3620
[80] Qin J Q, He D W, Wang J H, Fang L M, Lei L, Li Y J, Hu J, Kou Z L and Bi Y 2008 Adv. Mater. 20 4780
[81] Yang J, Gao, F M and Liu Y S 2017 Chin. Phys. B 26 106202
[82] Levine J B, Betts J B, Garrett J D, Guo S Q, Eng J T, Migliori A and Kaner R B 2010 Acta Mater. 58 1530
[83] Chung H Y, Yang J M, Tolbert S H and Kaner R B 2008 J. Mater. Res. 23 1797
[84] Hebbache M, Stuparević L and Živković D 2006 Solid State Commun. 139 227
[85] Chung H Y, Weinberger M B, Yang J M, Tolbert S H and Kaner R B 2008 Appl. Phys. Lett. 92 261904
[86] Chiodo S, Gotsis H J, Russo N and Sicilia E 2006 Chem. Phys. Lett. 425 311
[87] Chen Z Y, Xiang H J, Yang J, Hou J G and Zhu Q 2006 Phys. Rev. B 74 012102
[88] Gou H Y, Hou L, Zhang J W, Li H, Sun G F and Gao F M 2006 Appl. Phys. Lett. 88 221904
[89] Yang J, Sun H and Chen C F 2008 J. Am. Chem. Soc. 130 7200
[90] Luo X G, Li J P, Hu P and Dong S L 2010 Sci. China Technol. Sci. 53 1877
[91] Ivanovskii A L 2012 Inorg. Mater. 3 319
[92] Cumberland R W, Weinberger M B, Gilman J J, Clark S M, Tolbert S H and Kaner R B 2005 J. Am. Chem. Soc. 127 7264
[93] Aronsson B, Leden I, Sunner S, Hatanaka A and Munch-Petersen J 1963 Acta Chem. Scand. 17 2036
[94] Ma S L, Bao K, Tao Q, Zhu P W, Ma T, Liu B, Liu Y Z and Cui T 2017 Sci. Rep. 7 43759
[95] Ma S L, Bao K, Tao Q, Xu C H, Feng X K, Zhao X B, Ge Y F, Zhu P W and Cui T 2019 Phys. Chem. Chem. Phys. 21 2697
[96] Mohammadi R, Lech A T, Xie M, Weaver B E, Yeung M T, Tolbert S H and Kaner R B 2011 Proc. Natl. Acad. Sci. 108 10958
[97] Mohammadi R, Xie M, Lech A T, Turner C L, Kavner A, Tolbert S H and Kaner R B 2012 J. Am. Chem. Soc. 134 20660
[98] Zang C P, Sun H, Tse J S and Chen C F 2012 Phys. Rev. B 86 014108
[99] Zang C P, Sun H and Chen C F 2012 Phys. Rev. B 86 180101
[100] Tao Q, Zheng D F, Zhao X P, Chen Y L, Li Q, Li Q, Wang C C, Cui T, Ma Y M, Wang X and Zhu P W 2014 Chem. Mater. 26 5297
[101] Ma S L, Bao K, Tao Q, Huang Y P, Xu C C, Li L, Feng X K, Zhao X B, Zhu P W and Cui T 2019 Int. J. Refractory Metals Hard Mater. 85 104845
[102] Gou H Y, Dubrovinskaia N, Bykova E, Tsirlin A A, Kasinathan D, Schnelle W, Richter A, Merlini M, Hanfland M, Abakumov A M, Batuk D, Van Tendeloo G, Nakajima Y, Kolmogorov A N and Dubrovinsky L 2013 Phys. Rev. Lett. 111 157002
[103] Ma T, Li H, Zheng X, Wang S M, Wang X C, Zhao H Z, Han S B, Liu J, Zhang R F, Zhu P W, Long Y W, Cheng J G, Ma Y M, Zhao Y S, Jin C Q and Yu X H 2017 Adv. Mater. 29 1604003
[104] Akopov G, Yeung M T, Sobell Z C, Turner C L, Lin C W and Kaner R B 2016 Chem. Mater. 28 6605
[105] Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y and Akimitsu J 2001 Nature 410 63
[106] Gasparov V A, Sidorov N S, Zver'kova I I and Kulakov M P 2001 JETP Lett. 73 532
[107] Escamilla R, Lovera O, Akachi T, Durán A, Falconi R, Morales F and Escudero R 2004 J. Phys.: Condens. Matter 16 5979
[108] Mudgel M, Awana V P S, Bhalla G L and Kishan H 2008 Solid State Commun. 147 439
[109] Cooper A S, Corenzwit E, Longinotti L D, Matthias B T and Zachariasen W H 1970 Proc. Natl. Acad. Sci. 67 313
[110] Tang H, Gao X, Zhang J, Gao B, Zhou W J, Yan B M, Li X, Zhang Q H, Peng S, Huang D J, Zhang L J, Yuan X H, Wan B, Peng C, Wu L L, Zhang D Z, Liu H Y, Gu L, Gao F M, Irifune T, Ahuja R, Mao H K and Gou H Y 2019 Chem. Mater. 32 459
[111] Simonson J W, Wu D, Poon S J and Wolf S A 2010 J. Supercond. Nov. Magn. 23 417
[112] Renosto S T, Consoline H, dos Santos C A M, Albino Aguiar J, Jung S G, Vanacken J, Moshchalkov V V, Fisk Z and Machado A J S 2013 Phys. Rev. B 87 174502
[113] Jung S G, Vanacken J, Moshchalkov V V, Renosto S T, dos Santos C A M, Machado A J S, Fisk Z and Albino Aguiar J 2013 J. Appl. Phys. 114 133905
[114] Matthias B T, Geballe T H, Andres K, Corenzwit E, Hull G W and Maita J P 1968 Science 159 530
[115] Shein I R and Ivanovskii A L 2003 Phys. Solid State 45 1429
[116] Jäger B, Paluch S, ŻogałO J, Wolf W, Herzig P, Filippov V B, Shitsevalova N and Paderno Y 2006 J. Phys.: Condens. Matter 18 2525
[117] Lortz R, Wang Y, Abe S, Meingast C, Paderno Y B, Filippov V and Junod A 2005 Phys. Rev. B 72 024547
[118] Wang Y X, Lortz R, Paderno Y, Filippov V, Abe S, Tutsch U and Junod A 2005 Phys. Rev. B 72 024548
[119] Gasparov V A, Sidorov N S and Zver'kova I I 2006 Phys. Rev. B 73 094510
[120] Ge J Y, Gladilin V N, Sluchanko N E, Lyashenko A, Filipov V B, Indekeu J O and Moshchalkov V V 2017 New J. Phys. 19 093020
[121] Park H, Encinas A, Scheifers J P, Zhang Y and Fokwa B P T 2017 Angew. Chem. Int. Ed. 56 5575
[122] Jothi P R, Zhang Y, Scheifers J P, Park H and Fokwa B P T 2017 Sustain. Energy Fuels 1 1928
[123] Chen Z J, Duan X G, Wei W, Wang S B, Zhang Z J and Ni B J 2020 Nano Res. 13 293
[124] Chen H and Zou X X 2020 Inorg. Chem. Front. 7 2248
[125] Chen Y L, Yu G T, Chen W, Liu Y P, Li G D, Zhu P W, Tao Q, Li Q J, Liu J W, Shen X P, Li H, Huang X R, Wang D J, Asefa T and Zou X X 2017 J. Am. Chem. Soc. 139 12370
[126] Wang Y, Mayorga-Martinez C C, Chia X, Sofer Z, Mohamad Latiff N and Pumera M 2019 ACS Sustainable Chem. Eng. 7 12148
[127] Li Q J, Wang L N, Ai X, Chen H, Zou J Y, Li G D and Zou X X 2020 Chem. Commun. 56 13983
[128] Li X, Li Y, Wei Y H, Hou L F, Liu B S, Qu H B and Wang Y D 2018 J. Iron Steel Res. Int. 25 923
[129] Amano T, Okazaki M, Takezawa Y, Shiino A, Takeda M, Onishi T, Seto K, Ohkubo A and Shishido T 2006 Mater. Sci. Forum 522-523 469
[130] Matsui I, Mori H, Kawakatsu T, Takigawa Y, Uesugi T and Higashi K 2014 Mater. Sci. Eng. A 607 505
[131] Zhao X B, Li L, Bao K, Zhu P W, Tao Q, Ma S L, Liu B, Ge Y F, Li D and Cui T 2020 Phys. Chem. Chem. Phys. 22 27425
[132] Rahman M, Wang C C, Chen W, Akbar S A and Mroz C 1995 J. Am. Ceram. Soc. 78 1380
[133] Fahrenholtz W G, Binner J and Zou J 2016 J. Mater. Res. 31 2757
[134] Kravchenko S E, Kovalev D Y, Korobov I I, Kalinnikov G V, Konovalikhin S V, Khomenko N Y and Shilkin S P 2019 Inorg. Mater. 55 458
[135] Inoue R, Arai Y, Kubota Y, Kogo Y and Goto K 2018 J. Mater. Sci. 53 14885
[136] Kinoshita H, Otani S, Kamiyama S, Amano H, Akasaki I, Suda J and Matsunami H 2001 Jpn. J. Appl. Phys. 40 L1280
[137] Lonergan J M, Fahrenholtz W G, Hilmas G E and Trice R 2014 J. Am. Ceram. Soc. 97 1689
[138] Neuman E W, Hilmas G E, Fahrenholtz W G and Dominguez-Rodriguez A 2013 J. Am. Ceram. Soc. 96 47
[139] Cely A, Tergenius L E and Lundstrom T 1978 J. Less-Common Met. 61 193
[140] Akopov G, Roh I, Sobell Z C, Yeung M T and Kaner R B 2018 Dalton Trans. 47 6683
[141] Otani S and Ohsawa T 1999 J. Cryst. Growth 200 472
[142] Werheit H, Filipov V, Shirai K, Dekura H, Shitsevalova N, Schwarz U and Armbruster M 2011 J. Phys.: Condens. Matter 23 065403
[143] Liu Z T, Wei Y N, Meng X, Wei T T and Ran S L 2017 Ceram. Int. 43 1628
[144] Rao L, Gillan E G and Kaner R B 1995 J. Mater. Res. 10 353
[145] McKenna P M 1936 Ind. Eng. Chem. 28 767
[146] Zhao H, He Y and Jin Z Z 1995 J. Am. Ceram. Soc. 78 2534
[147] Chen L Y, Gu Y L, Yang Z H, Shi L, Ma J H and Qian Y T 2004 Scr. Mater. 50 959
[148] Alameda L T, Moradifar P, Metzger Z P, Alem N and Schaak R E 2018 J. Am. Chem. Soc. 140 8833
[1] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[2] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[3] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[4] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[5] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[6] Structure, phase evolution and properties of Ta films deposited using hybrid high-power pulsed and DC magnetron co-sputtering
Min Huang(黄敏), Yan-Song Liu(刘艳松), Zhi-Bing He(何智兵), and Yong Yi(易勇). Chin. Phys. B, 2022, 31(6): 066101.
[7] Temperature-dependent structure and magnetization of YCrO3 compound
Qian Zhao(赵前), Ying-Hao Zhu(朱英浩), Si Wu(吴思), Jun-Chao Xia(夏俊超), Peng-Fei Zhou(周鹏飞), Kai-Tong Sun(孙楷橦), and Hai-Feng Li(李海峰). Chin. Phys. B, 2022, 31(4): 046101.
[8] Pressure-induced phase transition in transition metal trifluorides
Peng Liu(刘鹏), Meiling Xu(徐美玲), Jian Lv(吕健), Pengyue Gao(高朋越), Chengxi Huang(黄呈熙), Yinwei Li(李印威), Jianyun Wang(王建云), Yanchao Wang(王彦超), and Mi Zhou(周密). Chin. Phys. B, 2022, 31(10): 106104.
[9] Structural modulation and physical properties of cobalt-doped layered La2M5As3O2 (M= Cu, Ni) compounds
Lei Yang(杨蕾), Yan-Peng Song(宋艳鹏), Jun-Jie Wang(王俊杰), Xu Chen(陈旭), Hui-Jing Du(杜会静), and Jian-Gang Guo(郭建刚). Chin. Phys. B, 2021, 30(7): 076106.
[10] Prediction of scandium tetraboride from first-principles calculations: Crystal structures, phase stability, mechanical properties,and hardness
Bin-Hua Chu(初斌华) and Yuan Zhao(赵元). Chin. Phys. B, 2021, 30(7): 076107.
[11] Structure and magnetic properties of RAlSi (R=light rare earth)
Tai Wang(王泰), Yongquan Guo(郭永权), and Cong Wang(王聪). Chin. Phys. B, 2021, 30(7): 075102.
[12] Structural and electrical transport properties of charge density wave material LaAgSb2 under high pressure
Bowen Zhang(张博文), Chao An(安超), Xuliang Chen(陈绪亮), Ying Zhou(周颖), Yonghui Zhou(周永惠), Yifang Yuan(袁亦方), Chunhua Chen(陈春华), Lili Zhang(张丽丽), Xiaoping Yang(杨晓萍), and Zhaorong Yang(杨昭荣). Chin. Phys. B, 2021, 30(7): 076201.
[13] Pressure-induced anomalous insulating behavior in frustrated iridate La3Ir3O11
Chun-Hua Chen(陈春华), Yong-Hui Zhou(周永惠), Ying Zhou(周颖), Yi-Fang Yuan(袁亦方), Chao An(安超), Xu-Liang Chen(陈绪亮), Zhao-Ming Tian(田召明), and Zhao-Rong Yang(杨昭荣). Chin. Phys. B, 2021, 30(6): 067402.
[14] Novel rubidium polyfluorides with F3, F4, and F5 species
Ziyue Lin(林子越), Hongyu Yu(于洪雨), Hao Song(宋昊), Zihan Zhang(张子涵), Tianxiao Liang(梁天笑), Mingyang Du(杜明阳), and Defang Duan(段德芳). Chin. Phys. B, 2021, 30(6): 066102.
[15] Properties of B4C-TiB2 ceramics prepared by spark plasma sintering
Jingzhe Fan(范静哲), Weixia Shen(沈维霞), Zhuangfei Zhang(张壮飞, Chao Fang(房超), Yuewen Zhang(张跃文), Liangchao Chen(陈良超), Qianqian Wang(王倩倩), Biao Wan(万彪), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(3): 038105.
No Suggested Reading articles found!