|
|
Quantum discord dynamics of two qubits in the single-mode cavities |
Wang Chen (王晨)a, Chen Qing-Hu (陈庆虎)a b |
a Department of Physics, Zhejiang University, Hangzhou 310027, China; b Center for Statistical and Theoretical Condensed Matter Physics, Zhejiang Normal University, Jinhua 321004, China |
|
|
Abstract The dynamics of the quantum discord for two identical qubits in both two independent single-mode cavities and a common single-mode cavity are discussed. For the initial Bell state with correlated spins, while the entanglement sudden death can occur, the quantum discord vanishes only at discrete moments in the independent cavities and never vanishes in the common cavity. Interestingly, quantum discord and entanglement show opposite behaviors in the common cavity, unlike in the independent cavities. For the initial Bell state with anti-correlated spins, quantum discord and entanglement behave in the same way for both independent cavities and a common cavity. It is found that the detunings always stabilize the quantum discord.
|
Received: 05 September 2012
Revised: 10 October 2012
Accepted manuscript online:
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11174254) and the National Basic Research Program of China (Grant Nos. 2011CBA00103 and 2009CB929104). |
Corresponding Authors:
Chen Qing-Hu
E-mail: qhchen@zju.edu.cn
|
Cite this article:
Wang Chen (王晨), Chen Qing-Hu (陈庆虎) Quantum discord dynamics of two qubits in the single-mode cavities 2013 Chin. Phys. B 22 040304
|
[1] |
Amico L, Fazio R, Osterloh A and Vedral V 2008 Rev. Mod. Phys. 80 517
|
[2] |
Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. A 47 777
|
[3] |
Bell J S 1964 Physics 1 195
|
[4] |
Bell J S 1987 Speakable and Unspeakable in Quantum Mechanics (Cambridge: Cambridge University Press)
|
[5] |
Nielsen M A and Chuang I L 2000 Quantum Computational and Quantum Information (Cambridge: Cambridge University Press)
|
[6] |
Tan X H, Fang X M and Wang G Y 2007 Chin. Phys. Lett. 24 340
|
[7] |
Zhang H, Luo J, Ren T T and Sun X P 2010 Chin. Phys. Lett. 27 090303
|
[8] |
Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
|
[9] |
Yu T and Eberly J H 2006 Phys. Rev. Lett. 97 140403
|
[10] |
Yönac M, Yu T and Eberly J H 2006 J. Phys. B: At. Mol. Opt. Phys. 39 S621
|
[11] |
Yönac M, Yu T and Eberly J H 2007 J. Phys. B: At. Mol. Opt. Phys. 40 S45
|
[12] |
Sainz I and Björk G 2007 Phys. Rev. A 76 042313
|
[13] |
Chan S, Reid M D and Ficek Z 2009 J. Phys. B: At. Mol. Opt. Phys. 42 065507
|
[14] |
Chen Q H, Yang Y, Liu T and Wang K L 2010 Phys. Rev. A 82 052306
|
[15] |
Almeida M P, de Melo F, Hor-Meyll M, Salles A, Walborn S P, Ribeiro P H S and Davidovich L 2007 Science 316 579
|
[16] |
Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
|
[17] |
Oppenheim J, Horodecki M, Horodecki P and Horodecki R 2002 Phys. Rev. Lett. 89 180402
|
[18] |
Modi K, Brodutch A, Cable H, Paterek T and Vedral V 2011 arXiv: 1112.6238
|
[19] |
Werlang T, Souza S, Fanchini F F and Boas C J V 2009 Phys. Rev. A 80 024103
|
[20] |
Wang L C, Yan J Y and Yi X X 2011 Chin. Phys. B 20 040305
|
[21] |
Hu Y H and Wang J Q 2012 Chin. Phys. B 21 014203
|
[22] |
Qian Y and Xu J B 2012 Chin. Phys. B 21 030305
|
[23] |
Xu J W and Chen Q H 2012 Chin. Phys. B 21 040302
|
[24] |
Ji Y H, Hu J J and Hu Y 2012 Chin. Phys. B 21 110304
|
[25] |
Lanyon B P, Barbieri M, Almeida M P and White A G 2008 Phys. Rev. Lett. 101 200501
|
[26] |
Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
|
[27] |
Ferraro A, Aolita L, Cavalcanti D, Cucchietti F M and Acín A 2010 Phys. Rev. A 81 052318
|
[28] |
Madhok V and Datta A 2011 Phys. Rev. A 83 032323
|
[29] |
Cavalcanti D, Aolita L, Boixo S, Modi K, Piani M and Winter A 2011 Phys. Rev. A 83 032324
|
[30] |
Madhok V and Datta A 2011 arXiv: 1107.0994
|
[31] |
Madhok V and Datta A 2012 arXiv: 1204.6042
|
[32] |
Abeyesinghe A, Devetak I, Hayden P and Winter A 2009 Proc. R. Soc. A 465 2537
|
[33] |
Gu M, Chrzanowski H M, Assad S M, Symul T, Modi K, Ralph T C, Vedral V and Lam P K 2012 Nature Phys. 8 671
|
[34] |
Maziero J, Werlang T, Fanchini F F, Céleri L C and Serra R M 2010 Phys. Rev. A 81 022116
|
[35] |
Altintas F and Eryigit R 2011 J. Phys. B: At. Mol. Opt. Phys. 44 125501
|
[36] |
Fanchini F F, Werlang T, Brasil C A, Arruda L G E and Caldeira A O 2010 Phys. Rev. A 81 052107
|
[37] |
Agarwal S, Rafsanjani S M H and Eberly J H 2012 arXiv: 1201.2928
|
[38] |
Sarandy M S 2009 Phys. Rev. A 80 022108
|
[39] |
Werlang T and Rigolin G 2010 Phys. Rev. A 81 044101
|
[40] |
Chen Q, Zhang C J, Yu S X, Yi X X and Oh C H 2011 Phys. Rev. A 84 042313
|
[41] |
Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
|
[42] |
Luo S L 2008 Phys. Rev. A 77 042303
|
[43] |
Dicke R H 1954 Phys. Rev. 93 99
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|