INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Performance enhancement of an InGaN light-emitting diode with an AlGaN/InGaN superlattice electron-blocking layer |
Xiong Jian-Yong (熊建勇)a, Xu Yi-Qin (许毅钦)b, Zhao Fang (赵芳)a, Song Jing-Jing (宋晶晶)a, Ding Bin-Bin (丁彬彬)a, Zheng Shu-Wen (郑树文)a, Zhang Tao (张涛)a, Fan Guang-Han (范广涵)a |
a Laboratory of Nanophotonic Functional Materials and Devices, Institute of Optoelectronic Materials and Technology, South China Normal University, Guangzhou 510631, China; b Guangdong General Research Institute for Industrial Technology, Guangzhou 510650, China |
|
|
Abstract The efficiency enhancement of an InGaN light-emitting diode (LED) with an AlGaN/InGaN superlattice (SL) electron-blocking layer (EBL) is studied numerically, which involves the light-current performance curve, internal quantum efficiency electrostatic field band wavefunction, energy band diagram carrier concentration, electron current density, and radiative recombination rate. The simulation results indicate that the LED with an AlGaN/InGaN SL EBL has better optical performance than the LED with a conventional rectangular AlGaN EBL or a normal AlGaN/GaN SL EBL because of the appropriately modified energy band diagram, which is favorable for the injection of holes and confinement of electrons. Additionally, the efficiency droop of the LED with an AlGaN/InGaN SL EBL is markedly improved by reducing the polarization field in the active region.
|
Received: 28 December 2012
Revised: 09 April 2013
Accepted manuscript online:
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61176043) and the Special Funds for Provincial Strategic and Emerging Industries Projects of Guangdong, China (Grant Nos. 2010A081002005, 2011A081301003, and 2012A080304016). |
Corresponding Authors:
Fan Guang-Han
E-mail: gfan@scnu.edu.cn
|
Cite this article:
Xiong Jian-Yong (熊建勇), Xu Yi-Qin (许毅钦), Zhao Fang (赵芳), Song Jing-Jing (宋晶晶), Ding Bin-Bin (丁彬彬), Zheng Shu-Wen (郑树文), Zhang Tao (张涛), Fan Guang-Han (范广涵) Performance enhancement of an InGaN light-emitting diode with an AlGaN/InGaN superlattice electron-blocking layer 2013 Chin. Phys. B 22 108505
|
[1] |
Fujii T, Gao Y, Sharma R, Hu E L, DenBaars S P and Nakamura S 2004 Appl. Phys. Lett. 84 855
|
[2] |
Koike M, Shibata N, Kato H and Takahashi Y 2002 IEEE J. Sel. Topics Quantum Electron. 8 271
|
[3] |
Onuma T, Amaike H, Kubota M, Okamoto K, Ohta H, Ichihara J, Takasu H and Chichibu S F 2007 Appl. Phys. Lett. 91 181903
|
[4] |
Shen Y C, Mueller G O, Watanabe S, Gardner N F, Munkholm A and Krames M R 2007 Appl. Phys. Lett. 91 141101
|
[5] |
Su Y K, Chang S J, Wei S C, Chuang R W, Chen S M and Li W L 2005 IEEE Electron Dev. Lett. 26 891
|
[6] |
Gong Z, Jin S, Chen Y, McKendry J, Massoubre D, Watson I M, Gu E and Dawson M D 2010 J. Appl. Phys. 107 013103
|
[7] |
Kim M H, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J and Park Y 2007 Appl. Phys. Lett. 91 183507
|
[8] |
Zhao H, Liu G, Arif R A and Tansu N 2010 Solid-State Electron. 54 1119
|
[9] |
Vampola K J, Iza M, Keller S, DenBaars S P and Nakamura S 2009 Appl. Phys. Lett. 94 061116
|
[10] |
Ni X, Fan Q, Shimada R, Özgür Ü and Morkoç H 2008 Appl. Phys. Lett. 93 171113
|
[11] |
Yen S H, Tsai M L, Tsai M C, Chang S J and Kuo Y K 2010 IEEE Photon. Technol. Lett. 22 1787
|
[12] |
Lu T P, Li S T, Zhang K, Liu C, Xiao G W, Zhou Y G, Zheng S W, Yin Y A, Wu L J, Wang H L and Yang X D 2011 Chin. Phys. B 20 098503
|
[13] |
Kuo Y K, Shih Y H, Tsai M C and Chang J Y 2011 IEEE Photon. Technol. Lett. 23 1630
|
[14] |
Wang T H and Xu J L 2012 Chin. Phys. B 21 128504
|
[15] |
Rozhansky I V and Zakheim D A 2006 Phys. Stat. Sol. 3 2160
|
[16] |
Xie J, Ni X, Fan Q, Shimada R, Özgür Ü and Morkoç H 2008 Appl. Phys. Lett. 93 121107
|
[17] |
Rozhansky I V and Zakheim D A 2006 Semiconductors 40 839
|
[18] |
Liu C, Ren Z W, Chen X, Zhao B J, Wang X F, Yin Y A and Li S T 2013 Chin. Phys. B 22 058502
|
[19] |
Wu L J, Li S T, Liu C, Wang H L, Lu T P, Zhang K, Xiao G W, Zhou Y G, Zheng S W, Yin Y A and Yang X D 2012 Chin. Phys. B 21 068506
|
[20] |
Kumakura K and Kobayashi N 1999 Jpn. J. Appl. Phys. 38 L1012
|
[21] |
Gong C C, Fan G H, Zhang Y Y, Xu Y Q, Liu X P, Zheng S W, Yao G R and Zhou D T 2012 Chin. Phys. B 21 068505
|
[22] |
Li J C, Yang W H, Li S P, Chen H Y, Liu D Y and Kang J Y 2009 Appl. Phys. Lett. 95 151113
|
[23] |
Zhang Y Y and Yin Y A 2011 Appl. Phys. Lett. 99 221103
|
[24] |
Kuo Y K, Wang T H and Chang J Y 2012 Appl. Phys. Lett. 100 031112
|
[25] |
APSYS by Crosslight Software Inc., Burnaby, Canada, available at http://www.crosslight.com
|
[26] |
Fiorentini V, Bernardini F and Ambacher O 2002 Appl. Phys. Lett. 80 1204
|
[27] |
Chichibu S F, Abare A C, Minsky M S, Keller S, Fleischer S B, Bowers J E, Hu E, Mishra U K, Coldren L A, DenBaars S P and Sota T 1998 Appl. Phys. Lett. 73 2006
|
[28] |
Renner F, Kiesel P, Döhler G H, Kneissl M, Van de Walle C G and Johnson N M 2002 Appl. Phys. Lett. 81 490
|
[29] |
Zhang H, Miller E J, Yu E T, Poblenz C and Speck J S 2004 Appl. Phys. Lett. 84 4644
|
[30] |
Kuo Y K, Tsai M C, Yen S H, Hsu T C and Shen Y J 2010 IEEE J. Quantum Electron. 46 1214
|
[31] |
Kuo Y K, Chang J Y, Tsai M C and Yen S H 2009 Appl. Phys. Lett. 95 011116
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|