Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 108505    DOI: 10.1088/1674-1056/22/10/108505
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Performance enhancement of an InGaN light-emitting diode with an AlGaN/InGaN superlattice electron-blocking layer

Xiong Jian-Yong (熊建勇)a, Xu Yi-Qin (许毅钦)b, Zhao Fang (赵芳)a, Song Jing-Jing (宋晶晶)a, Ding Bin-Bin (丁彬彬)a, Zheng Shu-Wen (郑树文)a, Zhang Tao (张涛)a, Fan Guang-Han (范广涵)a
a Laboratory of Nanophotonic Functional Materials and Devices, Institute of Optoelectronic Materials and Technology, South China Normal University, Guangzhou 510631, China;
b Guangdong General Research Institute for Industrial Technology, Guangzhou 510650, China
Abstract  The efficiency enhancement of an InGaN light-emitting diode (LED) with an AlGaN/InGaN superlattice (SL) electron-blocking layer (EBL) is studied numerically, which involves the light-current performance curve, internal quantum efficiency electrostatic field band wavefunction, energy band diagram carrier concentration, electron current density, and radiative recombination rate. The simulation results indicate that the LED with an AlGaN/InGaN SL EBL has better optical performance than the LED with a conventional rectangular AlGaN EBL or a normal AlGaN/GaN SL EBL because of the appropriately modified energy band diagram, which is favorable for the injection of holes and confinement of electrons. Additionally, the efficiency droop of the LED with an AlGaN/InGaN SL EBL is markedly improved by reducing the polarization field in the active region.
Keywords:  light-emitting diodes      AlGaN/InGaN superlattice efficiency droop      numerical simulation  
Received:  28 December 2012      Revised:  09 April 2013      Accepted manuscript online: 
PACS:  85.60.Jb (Light-emitting devices)  
  73.61.Ey (III-V semiconductors)  
  78.60.Fi (Electroluminescence)  
  87.15.Aa  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61176043) and the Special Funds for Provincial Strategic and Emerging Industries Projects of Guangdong, China (Grant Nos. 2010A081002005, 2011A081301003, and 2012A080304016).
Corresponding Authors:  Fan Guang-Han     E-mail:  gfan@scnu.edu.cn

Cite this article: 

Xiong Jian-Yong (熊建勇), Xu Yi-Qin (许毅钦), Zhao Fang (赵芳), Song Jing-Jing (宋晶晶), Ding Bin-Bin (丁彬彬), Zheng Shu-Wen (郑树文), Zhang Tao (张涛), Fan Guang-Han (范广涵) Performance enhancement of an InGaN light-emitting diode with an AlGaN/InGaN superlattice electron-blocking layer 2013 Chin. Phys. B 22 108505

[1] Fujii T, Gao Y, Sharma R, Hu E L, DenBaars S P and Nakamura S 2004 Appl. Phys. Lett. 84 855
[2] Koike M, Shibata N, Kato H and Takahashi Y 2002 IEEE J. Sel. Topics Quantum Electron. 8 271
[3] Onuma T, Amaike H, Kubota M, Okamoto K, Ohta H, Ichihara J, Takasu H and Chichibu S F 2007 Appl. Phys. Lett. 91 181903
[4] Shen Y C, Mueller G O, Watanabe S, Gardner N F, Munkholm A and Krames M R 2007 Appl. Phys. Lett. 91 141101
[5] Su Y K, Chang S J, Wei S C, Chuang R W, Chen S M and Li W L 2005 IEEE Electron Dev. Lett. 26 891
[6] Gong Z, Jin S, Chen Y, McKendry J, Massoubre D, Watson I M, Gu E and Dawson M D 2010 J. Appl. Phys. 107 013103
[7] Kim M H, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J and Park Y 2007 Appl. Phys. Lett. 91 183507
[8] Zhao H, Liu G, Arif R A and Tansu N 2010 Solid-State Electron. 54 1119
[9] Vampola K J, Iza M, Keller S, DenBaars S P and Nakamura S 2009 Appl. Phys. Lett. 94 061116
[10] Ni X, Fan Q, Shimada R, Özgür Ü and Morkoç H 2008 Appl. Phys. Lett. 93 171113
[11] Yen S H, Tsai M L, Tsai M C, Chang S J and Kuo Y K 2010 IEEE Photon. Technol. Lett. 22 1787
[12] Lu T P, Li S T, Zhang K, Liu C, Xiao G W, Zhou Y G, Zheng S W, Yin Y A, Wu L J, Wang H L and Yang X D 2011 Chin. Phys. B 20 098503
[13] Kuo Y K, Shih Y H, Tsai M C and Chang J Y 2011 IEEE Photon. Technol. Lett. 23 1630
[14] Wang T H and Xu J L 2012 Chin. Phys. B 21 128504
[15] Rozhansky I V and Zakheim D A 2006 Phys. Stat. Sol. 3 2160
[16] Xie J, Ni X, Fan Q, Shimada R, Özgür Ü and Morkoç H 2008 Appl. Phys. Lett. 93 121107
[17] Rozhansky I V and Zakheim D A 2006 Semiconductors 40 839
[18] Liu C, Ren Z W, Chen X, Zhao B J, Wang X F, Yin Y A and Li S T 2013 Chin. Phys. B 22 058502
[19] Wu L J, Li S T, Liu C, Wang H L, Lu T P, Zhang K, Xiao G W, Zhou Y G, Zheng S W, Yin Y A and Yang X D 2012 Chin. Phys. B 21 068506
[20] Kumakura K and Kobayashi N 1999 Jpn. J. Appl. Phys. 38 L1012
[21] Gong C C, Fan G H, Zhang Y Y, Xu Y Q, Liu X P, Zheng S W, Yao G R and Zhou D T 2012 Chin. Phys. B 21 068505
[22] Li J C, Yang W H, Li S P, Chen H Y, Liu D Y and Kang J Y 2009 Appl. Phys. Lett. 95 151113
[23] Zhang Y Y and Yin Y A 2011 Appl. Phys. Lett. 99 221103
[24] Kuo Y K, Wang T H and Chang J Y 2012 Appl. Phys. Lett. 100 031112
[25] APSYS by Crosslight Software Inc., Burnaby, Canada, available at http://www.crosslight.com
[26] Fiorentini V, Bernardini F and Ambacher O 2002 Appl. Phys. Lett. 80 1204
[27] Chichibu S F, Abare A C, Minsky M S, Keller S, Fleischer S B, Bowers J E, Hu E, Mishra U K, Coldren L A, DenBaars S P and Sota T 1998 Appl. Phys. Lett. 73 2006
[28] Renner F, Kiesel P, Döhler G H, Kneissl M, Van de Walle C G and Johnson N M 2002 Appl. Phys. Lett. 81 490
[29] Zhang H, Miller E J, Yu E T, Poblenz C and Speck J S 2004 Appl. Phys. Lett. 84 4644
[30] Kuo Y K, Tsai M C, Yen S H, Hsu T C and Shen Y J 2010 IEEE J. Quantum Electron. 46 1214
[31] Kuo Y K, Chang J Y, Tsai M C and Yen S H 2009 Appl. Phys. Lett. 95 011116
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[3] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[4] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[5] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[6] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[7] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[8] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[9] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[10] Large-area fabrication: The next target of perovskite light-emitting diodes
Hang Su(苏杭), Kun Zhu(朱坤), Jing Qin(钦敬), Mengyao Li(李梦瑶), Yulin Zuo(左郁琳), Yunzheng Wang(王允正), Yinggang Wu(吴迎港), Jiawei Cao(曹佳维), and Guolong Li(李国龙). Chin. Phys. B, 2021, 30(8): 088502.
[11] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[12] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[13] Theoretical verification of intermolecular hydrogen bond induced thermally activated delayed fluorescence in SOBF-Ome
Mu-Zhen Li(李慕臻), Fei-Yan Li(李飞雁), Qun Zhang(张群), Kai Zhang(张凯), Yu-Zhi Song(宋玉志), Jian-Zhong Fan(范建忠), Chuan-Kui Wang(王传奎), and Li-Li Lin(蔺丽丽). Chin. Phys. B, 2021, 30(12): 123302.
[14] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[15] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
No Suggested Reading articles found!