Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 107806    DOI: 10.1088/1674-1056/22/10/107806
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Structural distortions and magnetisms in Fe-doped LaMn1-xFexO 3 (0< x ≤ 0.6)

Zheng Long (郑龙), Wu Xiao-Shan (吴小山)
Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
Abstract  X-ray absorption spectra (XAS) at Mn K-edge and Fe K-edge in LaMn1-xFexO3 show that with the increase of Fe substitution the chemical valence of Mn4+ decreases, while the chemical valence of Fe3+ remains unchanged. Structural distortions, such as the rotating and tilting for oxygen octahedron in the unit cell vary with iron content. A phase transition occurs at the Fe content values of 0.2~0.3. The evolutions of rotation and tilting angle of FeO6/MnO6 octahedral may be the vital factors to the structure and magnetism. We believe that the spin configuration of Fe3+ may vary from the intermediate spin t2g4eg1 (S=3/2) to the higher spin t2g3eg2 (S=5/2) near the phase transition.
Keywords:  structural distortion      X-ray absorption      phase transition  
Received:  21 March 2013      Revised:  19 April 2013      Accepted manuscript online: 
PACS:  78.70.Dm (X-ray absorption spectra)  
  36.40.Cg (Electronic and magnetic properties of clusters)  
  61.05.cp (X-ray diffraction)  
Fund: Project supported by the State Key Program for Basic Research of China (Grant No. 2010CB923404) and the National Natural Science Foundation of China (Grant Nos. 11274153, 11204124, and 51202108).
Corresponding Authors:  Wu Xiao-Shan     E-mail:  xswu@nju.edu.cn

Cite this article: 

Zheng Long (郑龙), Wu Xiao-Shan (吴小山) Structural distortions and magnetisms in Fe-doped LaMn1-xFexO 3 (0< x ≤ 0.6) 2013 Chin. Phys. B 22 107806

[1] Ahn K H, Wu X W, Liu K and Chien C L 1996 Phys. Rev. B 54 15299
[2] Jin J L, Zhang X Q, Li G K, and Cheng Z H 2012 Chin. Phys. B 21 107501
[3] De K, Ray R, Panda R N, Giri S, Nakamura H and Kohara T 2005 J. Magn. Magn. Mater. 288 339
[4] De K, Patra M, Majumdar S and Giri S 2007 J. Phys. D: Appl. Phys. 40 7614
[5] Gu M Q, Xie Q, Shen X, Xie R B, Wang J L, Tang G, Wu D, Zhang G P and Wu X S 2012 Phys. Rev. Lett. 109 157003
[6] Gu M Q, Wang J L, Wu X S and Zhang G P 2012 J. Phys. Chem. C 116 24993
[7] Zheng L, Lu Yi, Zhao J J, Zhang X Q, Xing R, Wu H Y, Jin X, Zhou M and Cheng Z H 2010 Chin. Phys. B 19 127501
[8] Peng J, Qu Z, Qian B, Fobes D, Liu T J, Wu X S, Pham H M, Spinu L M S and Mao Z Q 2010 Phys. Rev. B 82 024417
[9] Patra M, De K, Majumdar S and Giri S 2007 Eur. Phys. J. B 58 367
[10] Zhou X D, Yang J B, Thomsen E C, Cai Q, Scarfino B J, Nie Z, Coffey G W, James W J, Yelon W B, Anderson H U and Pederson L R 2006 J. Electrochem. Soc. 153 J133
[11] de Lima O F, Coaquira J A H, de Almeida R L and Malik S K 2010 J. Appl. Phys. 107 09E107
[12] Zhou X D, Pederson L R, Cai Q, Yang J and Scarfino B J 2006 J. Appl. Phys. 99 08M918
[13] De Kalyanashis, Ray Ruma, Panda Rabi Narayan, Giri Saurav, Nakamura Hiroyuki and Kohara Takao 2005 J. Magn. Magn. Mater. 288 339
[14] De K, Thakur A, Manna A and Giri S 2006 J. Appl. Phys. 99 013908
[15] De K, Patra M, Majumdar S and Giri S 2008 J. Phys. D: Appl. Phys. 41 175007
[16] Wu X S and Gao J 1999 Physica C 315 215
[17] Wu X S, Jiang S S, Liu J, Chen W M and Jin X 1998 Physica C 309 25
[18] Larson A C and Von Dreele R B 1985 Los Alamos National Laboratory Report LAUR 86 748
[19] Wu X S and Gao J 1999 Physica C 313 49
[20] Xie Q Y, Wu Z P, Wu X S and Tan W S 2009 J. Alloys Compd. 474 81
[21] Karmakar A, Majumdar S and Giri S 2009 Phys. Rev. B 79 094406
[22] Liu X J, Lia Z Q, Yu A, Liu M L, Li W R, Li B L, Wu P, Bai H L and Jiang E Y 2007 J. Magn. Magn. Mater. 313 354
[23] NataliSora Isabella, Caronna Tullio, Fontana Francesca, Fernandez Cesar deJulian, Caneschi Andrea and Green Mark 2012 J. Solid State Chem. 191 33
[24] Bhame S D, Joly V L Joseph and Joy P A 2005 Phys. Rev. B 72 054426
[25] Thakur M, Patra M, Majumdar S and Giri S 2008 J. Phys.: Condens. Matter 20 195215
[26] Tong W, Zhang B, Tan S and Zhang Y H 2004 Phys. Rev. B 70 014422
[27] Hearne G R, Pasternak M P, Taylor R D and Lacorre P 1995 Phys. Rev. B 51 11495
[28] Shein I R, Shein K I, Kozhevnikov V L and Ivanovskii A L 2005 Phys. Solid State 47 2082
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[6] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[7] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[8] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[9] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[10] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[11] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[12] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[13] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[14] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[15] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
No Suggested Reading articles found!