CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
A comparison of the field emission characteristics of vertically aligned graphene sheets grown on different SiC substrates |
Chen Lian-Lian (陈莲莲), Guo Li-Wei (郭丽伟), Liu Yu (刘宇), Li Zhi-Lin (李治林), Huang Jiao (黄郊), Lu Wei (芦伟) |
Research & Development Center for Functional Crystals, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract The field emission (FE) properties of vertically aligned graphene sheets (VAGSs) grown on different SiC substrates are reported. The VAGSs grown on nonpolar SiC (10-10) substrate show an ordered alignment with the graphene basal plane-parallel to each other, and show better FE features, with a lower turn-on field and a larger field enhancement factor. The VAGSs grown on polar SiC (000-1) substrate reveal a random petaloid-shaped arrangement and stable current emission over 8 hours with a maximum emission current fluctuation of only 4%. The reasons behind the differing FE characteristics of the VAGSs on different SiC substrates are analyzed and discussed.
|
Received: 09 April 2012
Revised: 06 May 2013
Accepted manuscript online:
|
PACS:
|
79.70.+q
|
(Field emission, ionization, evaporation, and desorption)
|
|
61.48.Gh
|
(Structure of graphene)
|
|
Fund: Project supported by the National Key Basic Research Program of China (Grant No. 2011CB932700) and the National Natural Science Foundation of China (Grant Nos. 51272279, 51072223, and 50972162). |
Corresponding Authors:
Guo Li-Wei
E-mail: lwguo@iphy.ac.cn
|
Cite this article:
Chen Lian-Lian (陈莲莲), Guo Li-Wei (郭丽伟), Liu Yu (刘宇), Li Zhi-Lin (李治林), Huang Jiao (黄郊), Lu Wei (芦伟) A comparison of the field emission characteristics of vertically aligned graphene sheets grown on different SiC substrates 2013 Chin. Phys. B 22 107901
|
[1] |
Modinos A 1984 Field, Thermionic and Secondary Electron Emission Spectroscopy (New York: Plenum Press)
|
[2] |
Brodie I and Spindt C A 1992 Advances in Electronics and Electron Physics 83 1
|
[3] |
Deheer W A, Chatelain A and Ugarte D 1995 Science 270 1179
|
[4] |
Amaratunga G A J and Silva S R P 1996 Appl. Phys. Lett. 68 2529
|
[5] |
Okano K, Koizumi S, Silva S R P and Amaratunga G A J 1996 Nature 381 140
|
[6] |
Shang N G, Papakonstantinou P, Wang P, Zakharov A, Palnitkar U, Lin I N, Chu M and Stamboulis A 2009 Acs Nano 3 1032
|
[7] |
Yang Y N, Zhang Z Y, Zhang F C, Dong J T, Zhao W, Zhai C X and Zhang W H 2012 Chin. Phys. Lett. 29 018103
|
[8] |
Teng I J, Hsu H L, Jian S R, Kuo C T and Juang J Y 2012 Nanoscale 4 7362
|
[9] |
Wang S M, Tian H W, Meng Q N, Zhao C M, Qiao L, Bing Y F, Hu C Q, Zheng W T and Liu Y C 2012 Appl. Surf. Sci. 258 6930
|
[10] |
Wang Y Y, Li Y A, Xu J S and Gu G R 2012 Chin. Phys. B 21 087902
|
[11] |
Lee D H, Kim J E, Han T H, Hwang J W, Jeon S, Choi S Y, Hong S H, Lee W J, Ruoff R S and Kim S O 2010 Adv. Mater. 22 1247
|
[12] |
Zheng L W, Hu L Q, Xiao X J, Yang F, Lin H and Guo T L 2011 Chin. Phys. B 20 128502
|
[13] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[14] |
Ye D X, Moussa S, Ferguson J D, Baski A A and El-Shall M S 2012 Nano Lett. 12 1265
|
[15] |
Wu Z S, Pei S F, Ren W C, Tang D M, Gao L B, Liu B L, Li F, Liu C and Cheng H M 2009 Adv. Mater. 21 1756
|
[16] |
Wang X P, Liu X F, Liu X X, Wang L J, Yang C, Jing L W, Li S K and Pan X F 2012 Chin. Phys. B 21 128102
|
[17] |
Xiao Z M, She J C, Deng S Z, Tang Z K, Li Z B, Lu J M and Xu N S 2010 Acs Nano 4 6332
|
[18] |
Li L, Sun W N, Tian S B, Xia X X, Li J J and Gu C Z 2012 Nanoscale 4 6383
|
[19] |
Soin N, Roy S S, Roy S, Hazra K S, Misra D S, Lim T H, Hetherington C J and McLaughlin J A 2011 J. Phys. Chem. C 115 5366
|
[20] |
Jiang L L, Yang T Z, Liu F, Dong J, Yao Z H, Shen C M, Deng S Z, Xu N S, Liu Y Q and Gao H J 2013 Adv. Mater. 25 250
|
[21] |
Araidai M, Nakamura Y and Watanabe K 2004 Phys. Rev. B 70 245410
|
[22] |
Koh A T T, Foong Y M, Pan L K, Sun Z and Chua D H C 2012 Appl. Phys. Lett. 101 183107
|
[23] |
Malesevic A, Kemps R, Vanhulsel A, Chowdhury M P, Volodin A and Van Haesendonck C 2008 J. Appl. Phys. 104 084301
|
[24] |
Huang Q S, Wang G, Guo L W, Jia Y P, Lin J J, Li K, Wang W J and Chen X L 2011 Small 7 450
|
[25] |
Wang Y Y, Gupta S, Liang M and Nemanich R J 2005 J. Appl. Phys. 97 104309
|
[26] |
Malard L M, Pimenta M A, Dresselhaus G and Dresselhaus M S 2009 Phys. Rep. 473 51
|
[27] |
Fowler R H and Nordheim L 1928 Royal Soc. Lond. Proc. 119 173
|
[28] |
Ducati C, Barborini E, Piseri P, Milani P and Robertson J 2002 J. Appl. Phys. 92 5482
|
[29] |
Lee K, Lim S C, Choi Y C and Lee Y H 2008 Appl. Phys. Lett. 93 063101
|
[30] |
Barbour J P, Dolan W W, Trolan J K, Martin E E and Dyke W P 1953 Phys. Rev. 92 45
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|