Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 107201    DOI: 10.1088/1674-1056/22/10/107201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Structural and electrical properties of laser-crystallized nanocrystalline Ge films and nanocrystalline Ge/SiNx multilayers

Li Cong (李悰), Xu Jun (徐骏), Li Wei (李伟), Jiang Xiao-Fan (江小帆), Sun Sheng-Hua (孙胜华), Xu Ling (徐岭), Chen Kun-Ji (陈坤基)
National Laboratory of Solid State Microstructures, School of Physics, and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
Abstract  Nanocrystalline Ge (nc-Ge) single layers and nc-Ge/SiNx multilayers are prepared by laser annealing amorphous Ge (a-Ge) films and a-Ge/SiNx multilayers. The microstructures as well as the electrical properties of laser-crystallized samples are systematically studied by using various techniques. It is found that the optical band gap of nc-Ge film is reduced compared with its amorphous counterpart. The formed nc-Ge film is of p-type, and the dark conductivity is enhanced by 6 orders for an nc-Ge single layer and 4 orders for a multilayer. It is suggested that the carrier transport mechanism is dominant by the thermally activation process via the nanocrystal, which is different from the thermally annealed nc-Ge sample at an intermediate temperature. The carrier mobility of nc-Ge film can reach as high as about 39.4 cm2·V-1·s-1, which indicates their potential applications in future nano-devices.
Keywords:  nanocrystalline Ge      microstructure      carrier transport      mobility  
Received:  21 February 2013      Revised:  19 April 2013      Accepted manuscript online: 
PACS:  72.20.Ee (Mobility edges; hopping transport)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  78.20.-e (Optical properties of bulk materials and thin films)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB632101), the National Natural Science Foundation of China (Grant Nos. 11274155 and 61036001), and Priority Academic Program Development of Jiangsu Higher Education Institutions, Jiangsu Province, China.
Corresponding Authors:  Xu Jun     E-mail:  junxu@nju.edu.cn

Cite this article: 

Li Cong (李悰), Xu Jun (徐骏), Li Wei (李伟), Jiang Xiao-Fan (江小帆), Sun Sheng-Hua (孙胜华), Xu Ling (徐岭), Chen Kun-Ji (陈坤基) Structural and electrical properties of laser-crystallized nanocrystalline Ge films and nanocrystalline Ge/SiNx multilayers 2013 Chin. Phys. B 22 107201

[1] Poncet A, Souifi A, Baron T and Gautier E 2006 Solid State Electron. 50 1310
[2] Tawancy H 2011 Scr. Mater. 65 863
[3] Huang W, Liu J, Cai C, Lu Q, Liu S and Qin C 2010 Chin. Phys. B. 19 097801
[4] Ortiz M, Rodriguez A, Sangrador J, Rodriguez T, Avella M, Jimenez J and Ballesteros C 2005 Nanotechnology 16 S197
[5] Xu H, Chan Y and Su L 2011 Chin. Phys. B 21 107801
[6] Singha R, Manna S, Das S, Dhar A and Ray S 2010 Appl. Phys. Lett. 96 233113
[7] Mitsui M, Arimoto K, Yamanaka J, Nakagawa K, Sawano K and Shiraki Y 2006 Appl. Phys. Lett. 89 192102
[8] Kuo P, Chao T, Huang J and Lei T 2009 IEEE Electron Dev. Lett. 30 234
[9] Li C, Xu J, Li W, Sun S, Jiang X and Chen K 2012 J. Vac. Sci. Technol. B 30 051201
[10] Khan A, Mehmood M, Rana A and Muhammad T 2010 Appl. Surf. Sci. 256 2031
[11] Wang Z, Wang J, Jeurgens L and Mittemeijer E 2008 Phys. Rev. B 77 045424
[12] Knaepen W, Detavernier C, Van Meirhaeghe R, Sweet J and Lavoie C 2008 Thin Solid Films 516 4946
[13] Santos P, Zanatta A, Dondeo F, Trampert A, Jahn U, Comedi D, Pudenzi M and Chambouleyron I 2001 Journal of Non-Crystalline Solids 299 137
[14] Salihoglu O, Kurum U, Yaglioglu H, Elmali A and Aydinli A 2011 J. Appl. Phys. 109 123108
[15] Salihoglu O, Kurum U, Yaglioglu H, Elmali A and Aydinli A 2012 J. Vac. Sci. Technol. B 30 011807
[16] Watakabe H, Sameshima T, Kanno H and Miyao M 2006 Thin Solid Films 508 315
[17] Mondal S and Ray S 2009 Appl. Phys. Lett. 94 223119
[18] Poulsen P, Wang M, Xu J, Li W, Chen K, Wang G and Feng D 1998 J. Appl. Phys. 84 3386
[19] Wang H, Lusquinos F and Yao Y 2012 Appl. Phys. A 107 307
[20] Tsao C, Campbell P, Song D and Green M 2010 J. Crystal Growth 312 2647
[21] Yu P and Cardona M 2001 Fundamentals of Semiconductors: Physics and Materials Properties, 3rd edn. (Berlin: Springer Press) pp. 269-273
[22] Tsao C, Wong J, Huang J, Campbell P, Song D and Green M 2011 Appl. Phys. A 102 689
[23] Zhang B, Yao Y, Patterson R, Shrestha S, Green M and Conibeer G 2011 Nanotechnology 22 125204
[24] Song C, Chen G, Xu J, Wang T, Sun H, Liu Y, Li W, Ma Z, Xu L, Huang X and Chen K 2009 J. Appl. Phys. 105 054901
[25] Clark A 1967 Phys. Rev. 154 750
[26] Giangregorio M, Losurdo M, Ambrico M, Capezzuto P, Bruno G and Tapfer L 2006 J. Appl. Phys. 99 063511
[27] Tsai C, Yu S, Hsin C, Huang C, Wang C and Wu W 2012 Crystal Eng. Comm. 14 53
[28] Chen G, Xu J, Xu W, Sun H, Mu W, Sun S, Ma Z, Huang X and Chen K 2012 J. Appl. Phys. 111 094320
[29] Chen G, Song C, Xu J, Wang D, Xu L, Ma Z, Li W, Huang X and Chen K 2010 Acta Phys. Sin. 59 5681 (in Chinese)
[30] Xu X, Grigoropoulos C and Russo R 1995 J. Heat Transfer 117 708
[31] Fujii M, Mamezaki O, Hayashi S and Yamamoto K 1998 J. Appl. Phys. 83 1507
[32] Barbagiovanni E, Lockwood D, Simpson P and Goncharova L 2012 J. Appl. Phys. 111 034307
[33] Thathachary A, Bhat K, Bhat N and Hegde M 2010 Appl. Phys. Lett. 96 152108
[1] Mobility edges generated by the non-Hermitian flatband lattice
Tong Liu(刘通) and Shujie Cheng(成书杰). Chin. Phys. B, 2023, 32(2): 027102.
[2] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[3] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[4] Current bifurcation, reversals and multiple mobility transitions of dipole in alternating electric fields
Wei Du(杜威), Kao Jia(贾考), Zhi-Long Shi(施志龙), and Lin-Ru Nie(聂林如). Chin. Phys. B, 2023, 32(2): 020505.
[5] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[6] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[7] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[8] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[9] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[10] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[11] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[12] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[13] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[14] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[15] Interface modulated electron mobility enhancement in core-shell nanowires
Yan He(贺言), Hua-Kai Xu(许华慨), and Gang Ouyang(欧阳钢). Chin. Phys. B, 2022, 31(11): 110502.
No Suggested Reading articles found!