ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
A mode-locked external-cavity quantum-dot laser with a variable repetition rate |
Wu Jian (吴剑), Jin Peng (金鹏), Li Xin-Kun (李新坤), Wei Heng (魏恒), Wu Yan-Hua (吴艳华), Wang Fei-Fei (王飞飞), Chen Hong-Mei (陈红梅), Wu Ju (吴巨), Wang Zhan-Guo (王占国) |
Key Laboratory of Semiconductor Materials Science and Beijing Key Laboratory of Low-dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China |
|
|
Abstract A mode-locked external-cavity laser emitting at 1.17-μm wavelength using an InAs/GaAs quantum-dot gain medium and a discrete semiconductor saturable absorber mirror is demonstrated. By changing the external-cavity length, repetition rates of 854, 912, and 969 MHz are achieved respectively. The narrowest-3-dB radio-frequency linewidth obtained is 38 kHz, indicating that the laser is under stable mode-locking operation.
|
Received: 23 March 2013
Revised: 25 April 2013
Accepted manuscript online:
|
PACS:
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
78.67.Hc
|
(Quantum dots)
|
|
81.07.Ta
|
(Quantum dots)
|
|
81.16.Dn
|
(Self-assembly)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61274072, 60976057, and 60876086). |
Corresponding Authors:
Jin Peng
E-mail: pengjin@semi.ac.cn
|
Cite this article:
Wu Jian (吴剑), Jin Peng (金鹏), Li Xin-Kun (李新坤), Wei Heng (魏恒), Wu Yan-Hua (吴艳华), Wang Fei-Fei (王飞飞), Chen Hong-Mei (陈红梅), Wu Ju (吴巨), Wang Zhan-Guo (王占国) A mode-locked external-cavity quantum-dot laser with a variable repetition rate 2013 Chin. Phys. B 22 104206
|
[1] |
Ho P T, Glasser L A, Ippen E P and Haus H A 1978 Appl. Phys. Lett. 33 241
|
[2] |
Huang X D, Stintz A, Li H, Lester L F, Cheng J L and Malloy K J 2001 Appl. Phys. Lett. 78 2825
|
[3] |
Yoshita M, Kuramoto M, Ikeda M and Yokoyama H 2009 Appl. Phys. Lett. 94 061104
|
[4] |
Yamada N, Ohta H and Nogiwa S 2002 Electron. Lett. 38 1044
|
[5] |
Delfyett P, Hartman D and Ahmad S 1991 J. Lightwave Technol. 9 1646
|
[6] |
Rafailov E U, Cataluna M A and Sibbett W 2007 Nat. Photon. 1 395
|
[7] |
Keller U 2003 Nature 424 831
|
[8] |
Rafailov E U, Cataluna M A, Sibbett W, Zadiranov Y M, Zhukov A E, Ustinov V M, Livshits D A, Kovsh A R and Ledentsov N N 2005 Appl. Phys. Lett. 87 81107
|
[9] |
Lu Z G, Liu J R, Raymond S, Poole P J, Barrios P J and Poitras D 2008 Opt. Express 16 10853
|
[10] |
Thompson M G, Rae A R, Xia M, Penty R V and White I H 2009 IEEE J. Quantum Electron. 15 661
|
[11] |
Cataluna M A, Rafailov E U, McRobbie A D, Sibbett W, Livshits D A and Kovsh A R 2006 IEEE Photon. Technol. Lett. 18 1500
|
[12] |
Liu J R, Lu Z G, Raymond S, Poole P J, Barrios P J and Poitras D 2008 Opt. Lett. 33 1702
|
[13] |
Nikitichev D, Ding Y, Ruiz M, Calligaro M, Michel N, Krakowski M, Krestnikov I, Livshits D, Cataluna M and Rafailov E 2011 Appl. Phys. B 103 609
|
[14] |
Liu N, Jin P and Wang Z G 2012 Chin. Phys. B 21 117305
|
[15] |
Li X K, Liang D C, Jin P, An Q, Wei H, Wu J and Wang Z G 2012 Chin. Phys. B 21 028102
|
[16] |
Liang D C, An Q, Jin P, Li X K, Wei H, Wu J and Wang Z G 2011 Chin. Phys. B 20 108503
|
[17] |
Wu J, Lü X Q, Jin P, Meng X Q and Wang Z G 2011 Chin. Phys. B 20 064202
|
[18] |
Lü X Q, Jin P and Wang Z G 2010 Chin. Phys. B 19 018104
|
[19] |
Lü X Q, Jin P and Wang Z G 2010 IEEE Photon. Technol. Lett. 22 1799
|
[20] |
Lü X Q, Jin P, Wang W Y and Wang Z G 2010 Opt. Express 18 8916
|
[21] |
Varangis P M, Li H, Liu G T, Newell T C, Stintz A, Fuchs B, Malloy K J and Lester L F 2000 Electron. Lett. 36 1544
|
[22] |
Li H, Liu G T, Varangis P M, Newell T C, Stintz A, Fuchs B, Malloy K J and Lester L F 2000 IEEE Photon. Technol. Lett. 12 759
|
[23] |
Eliseev P, Li H, Stintz A, Liu G T, Newell T C, Malloy K J and Lester L F 2000 IEEE J. Quantum Electron. 36 479
|
[24] |
Biebersdorf A, Lingk C, De Giorgi M, Feldmann J, Sacher J, Arzberger M, Ulbrich C, Böhm G, Amann M C and Abstreiter G 2003 J. Phys. D: Appl. Phys. 36 1928
|
[25] |
Allen C Ní, Poole P J, Barrios P, Marshall P, Pakulski G, Raymond S and Fafard S 2005 Physica E 26 372
|
[26] |
Ortner G, Allen C Ní, Dion C, Barrios P, Poitras D, Dalacu D, Pakulski G, Lapointe J, Poole P J, Render W and Raymond S 2006 Appl. Phys. Lett. 88 121119
|
[27] |
Tierno A and Ackemann T 2007 Appl. Phys. B 89 585
|
[28] |
Nevsky A Yu, Bressel U, Ernsting I, Eisele Ch, Okhapkin M, Schiller S, Gubenko A, Livshits D, Mikhrin S, Krestnikov I and Kovsh A 2008 Appl. Phys. B 92 501
|
[29] |
Fedorova K A, Cataluna M A, Krestnikov I, Livshits D and Rafailov E U 2010 Opt. Express 18 19438
|
[30] |
Maas D J H C, Bellancourt A R, Hoffmann M, Rudin B, Barbarin Y, Golling M, Südmeyer T and Keller U 2008 Opt. Express 16 18646
|
[31] |
Borri P, Schneider S, Langbein W and Bimberg D 2006 J. Opt. A: Pure Appl. Opt. 8 S33
|
[32] |
Rae A R, Thompson M G, Penty R V, White H I, Kovsh A R, Mikhrin S S, Livshits D A and Krestnikov I L 2011 Appl. Phys. Express 4 062703
|
[34] |
Paschotta R and Keller U 2001 Appl. Phys. B 73 653
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|