Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 104206    DOI: 10.1088/1674-1056/22/10/104206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A mode-locked external-cavity quantum-dot laser with a variable repetition rate

Wu Jian (吴剑), Jin Peng (金鹏), Li Xin-Kun (李新坤), Wei Heng (魏恒), Wu Yan-Hua (吴艳华), Wang Fei-Fei (王飞飞), Chen Hong-Mei (陈红梅), Wu Ju (吴巨), Wang Zhan-Guo (王占国)
Key Laboratory of Semiconductor Materials Science and Beijing Key Laboratory of Low-dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  A mode-locked external-cavity laser emitting at 1.17-μm wavelength using an InAs/GaAs quantum-dot gain medium and a discrete semiconductor saturable absorber mirror is demonstrated. By changing the external-cavity length, repetition rates of 854, 912, and 969 MHz are achieved respectively. The narrowest-3-dB radio-frequency linewidth obtained is 38 kHz, indicating that the laser is under stable mode-locking operation.
Keywords:  external cavity      quantum dot      mode-locked laser  
Received:  23 March 2013      Revised:  25 April 2013      Accepted manuscript online: 
PACS:  42.60.Fc (Modulation, tuning, and mode locking)  
  78.67.Hc (Quantum dots)  
  81.07.Ta (Quantum dots)  
  81.16.Dn (Self-assembly)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61274072, 60976057, and 60876086).
Corresponding Authors:  Jin Peng     E-mail:  pengjin@semi.ac.cn

Cite this article: 

Wu Jian (吴剑), Jin Peng (金鹏), Li Xin-Kun (李新坤), Wei Heng (魏恒), Wu Yan-Hua (吴艳华), Wang Fei-Fei (王飞飞), Chen Hong-Mei (陈红梅), Wu Ju (吴巨), Wang Zhan-Guo (王占国) A mode-locked external-cavity quantum-dot laser with a variable repetition rate 2013 Chin. Phys. B 22 104206

[1] Ho P T, Glasser L A, Ippen E P and Haus H A 1978 Appl. Phys. Lett. 33 241
[2] Huang X D, Stintz A, Li H, Lester L F, Cheng J L and Malloy K J 2001 Appl. Phys. Lett. 78 2825
[3] Yoshita M, Kuramoto M, Ikeda M and Yokoyama H 2009 Appl. Phys. Lett. 94 061104
[4] Yamada N, Ohta H and Nogiwa S 2002 Electron. Lett. 38 1044
[5] Delfyett P, Hartman D and Ahmad S 1991 J. Lightwave Technol. 9 1646
[6] Rafailov E U, Cataluna M A and Sibbett W 2007 Nat. Photon. 1 395
[7] Keller U 2003 Nature 424 831
[8] Rafailov E U, Cataluna M A, Sibbett W, Zadiranov Y M, Zhukov A E, Ustinov V M, Livshits D A, Kovsh A R and Ledentsov N N 2005 Appl. Phys. Lett. 87 81107
[9] Lu Z G, Liu J R, Raymond S, Poole P J, Barrios P J and Poitras D 2008 Opt. Express 16 10853
[10] Thompson M G, Rae A R, Xia M, Penty R V and White I H 2009 IEEE J. Quantum Electron. 15 661
[11] Cataluna M A, Rafailov E U, McRobbie A D, Sibbett W, Livshits D A and Kovsh A R 2006 IEEE Photon. Technol. Lett. 18 1500
[12] Liu J R, Lu Z G, Raymond S, Poole P J, Barrios P J and Poitras D 2008 Opt. Lett. 33 1702
[13] Nikitichev D, Ding Y, Ruiz M, Calligaro M, Michel N, Krakowski M, Krestnikov I, Livshits D, Cataluna M and Rafailov E 2011 Appl. Phys. B 103 609
[14] Liu N, Jin P and Wang Z G 2012 Chin. Phys. B 21 117305
[15] Li X K, Liang D C, Jin P, An Q, Wei H, Wu J and Wang Z G 2012 Chin. Phys. B 21 028102
[16] Liang D C, An Q, Jin P, Li X K, Wei H, Wu J and Wang Z G 2011 Chin. Phys. B 20 108503
[17] Wu J, Lü X Q, Jin P, Meng X Q and Wang Z G 2011 Chin. Phys. B 20 064202
[18] Lü X Q, Jin P and Wang Z G 2010 Chin. Phys. B 19 018104
[19] Lü X Q, Jin P and Wang Z G 2010 IEEE Photon. Technol. Lett. 22 1799
[20] Lü X Q, Jin P, Wang W Y and Wang Z G 2010 Opt. Express 18 8916
[21] Varangis P M, Li H, Liu G T, Newell T C, Stintz A, Fuchs B, Malloy K J and Lester L F 2000 Electron. Lett. 36 1544
[22] Li H, Liu G T, Varangis P M, Newell T C, Stintz A, Fuchs B, Malloy K J and Lester L F 2000 IEEE Photon. Technol. Lett. 12 759
[23] Eliseev P, Li H, Stintz A, Liu G T, Newell T C, Malloy K J and Lester L F 2000 IEEE J. Quantum Electron. 36 479
[24] Biebersdorf A, Lingk C, De Giorgi M, Feldmann J, Sacher J, Arzberger M, Ulbrich C, Böhm G, Amann M C and Abstreiter G 2003 J. Phys. D: Appl. Phys. 36 1928
[25] Allen C Ní, Poole P J, Barrios P, Marshall P, Pakulski G, Raymond S and Fafard S 2005 Physica E 26 372
[26] Ortner G, Allen C Ní, Dion C, Barrios P, Poitras D, Dalacu D, Pakulski G, Lapointe J, Poole P J, Render W and Raymond S 2006 Appl. Phys. Lett. 88 121119
[27] Tierno A and Ackemann T 2007 Appl. Phys. B 89 585
[28] Nevsky A Yu, Bressel U, Ernsting I, Eisele Ch, Okhapkin M, Schiller S, Gubenko A, Livshits D, Mikhrin S, Krestnikov I and Kovsh A 2008 Appl. Phys. B 92 501
[29] Fedorova K A, Cataluna M A, Krestnikov I, Livshits D and Rafailov E U 2010 Opt. Express 18 19438
[30] Maas D J H C, Bellancourt A R, Hoffmann M, Rudin B, Barbarin Y, Golling M, Südmeyer T and Keller U 2008 Opt. Express 16 18646
[31] Borri P, Schneider S, Langbein W and Bimberg D 2006 J. Opt. A: Pure Appl. Opt. 8 S33
[32] Rae A R, Thompson M G, Penty R V, White H I, Kovsh A R, Mikhrin S S, Livshits D A and Krestnikov I L 2011 Appl. Phys. Express 4 062703
[34] Paschotta R and Keller U 2001 Appl. Phys. B 73 653
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[4] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[5] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[6] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[9] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[10] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[11] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[12] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[13] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
No Suggested Reading articles found!