Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 018801    DOI: 10.1088/1674-1056/22/1/018801
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Performance improvement of CdS/Cu(In,Ga)Se2 solar cells after rapid thermal annealing

Chen Dong-Sheng (陈东生)a b, Yang Jie (杨洁)a, Xu Fei (徐飞)a, Zhou Ping-Hua (周平华)a, Du Hui-Wei (杜汇伟)a, Shi Jian-Wei (石建伟)a, Yu Zheng-Shan (于征汕)c, Zhang Yu-Hong (张玉红)c, Brian Bartholomeuszd, Ma Zhong-Quan (马忠权)a
a SHU-SolarE R&D Lab, Department of Physics, Shanghai University, Shanghai 200444, China;
b College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China;
c Shanghai Solar EnerTech Co. Ltd, Shanghai 201206, China;
d Applied Quantum Technology Ltd. Co. USA
Abstract  In this paper, we investigated the effect of rapid thermal annealing (RTA) on solar cell performance. An opto-electric conversion efficiency of 11.75% (Voc= 0.64 V, Jsc= 25.88 mA/cm2, FF=72.08%) was obtained under AM 1.5G when the cell was annealed at 300 ℃ for 30 s. The annealed solar cell showed an average absolute efficiency 1.5% higher than that of the as-deposited one. For the microstructure analysis and the physical phase confirmation, X-ray diffraction (XRD), Raman spectra, front surface reflection (FSR), internal quantum efficiency (IQE), and X-ray photoelectron spectroscopy (XPS) were respectively applied to distinguish the causes inducing the efficiency variation. All experimental results implied that the RTA eliminated recombination centers at the p-n junction, reduced the surface optical losses, enhanced the blue response of the CdS buffer layer, and improved the ohmic contact between Mo and Cu(In, Ga)Se2 (CIGS) layers. This leaded to the improved performance of CIGS solar cell.
Keywords:  CdS/Cu(In, Ga)Se2      solar cell      rapid thermal annealing      performance improvement  
Received:  27 April 2012      Revised:  15 July 2012      Accepted manuscript online: 
PACS:  88.40.jn (Thin film Cu-based I-III-VI2 solar cells)  
  68.35.-p (Solid surfaces and solid-solid interfaces: structure and energetics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60876045), the Shanghai Leading Basic Research Project, China (Grant No. 09JC1405900), the Shanghai Leading Academic Discipline Project, China (Grant No. S30105), and the R&D Foundation of SHU-SOENs PV Joint Lab, China (Grant No. SS-E0700601). Part measurement was supported by Analysis and Testing Center of Shanghai University, China.
Corresponding Authors:  Ma Zhong-Quan     E-mail:  zqma@shu.edu.cn

Cite this article: 

Chen Dong-Sheng (陈东生), Yang Jie (杨洁), Xu Fei (徐飞), Zhou Ping-Hua (周平华), Du Hui-Wei (杜汇伟), Shi Jian-Wei (石建伟), Yu Zheng-Shan (于征汕), Zhang Yu-Hong (张玉红), Brian Bartholomeusz, Ma Zhong-Quan (马忠权) Performance improvement of CdS/Cu(In,Ga)Se2 solar cells after rapid thermal annealing 2013 Chin. Phys. B 22 018801

[1] Green M A, Emery K, Hishikawa Y and Warta W 2011 Prog. Photovolt. Res. Appl. 19 84
[2] Xu S J, Wang X C and Chua S J 1998 Appl. Phys. Lett. 72 3335
[3] Liu X M, Li B C and Huang Q P 2010 Chin. Phys. B 19 097201
[4] Miyazaki H, Mikami R, Yamada A and Konagai M 2004 Jpn. J. Appl. Phys. 43 4244
[5] Chung Y D, Cho D H, Park N M, Lee K S and Kim J 2011 Curr. Appl. Phys. 11 S65
[6] Wang X, Li S S, Kim W K, Yoon S, Craciun V, Howard J M, Easwaran S, Manasreh O, Crisalle O D and Andersonb T J 2006 Sol. Energ. Mat. Sol. C 90 2855
[7] Hsu H R, Hsu S C and Liu Y S 2012 Sol. Energy 86 48
[8] Hsieh T P, Chuang C C, Wu C S, Chang J C, Guo J W and Chen W C 2011 Solid. State. Electron. 56 175
[9] Zaretskaya E P, Gremenok V F, Riede V, Schmitz W, Bente K, Zalesski V B and Ermakov O V 2003 J. Phys. Chem. Solids 64 1989
[10] Steven S H and William N S 2004 Prog. Photovolt. Res. Appl. 12 155
[11] Tong H, Deng Z H, Liu Z G, Huang C G, Huang J Q, Lan H, Wang C and Cao Y G 2011 Appl. Surf. Sci. 257 4906
[12] Assmann L, Berne'de J C, Drici A, Amory C, Halgand E and Morsli M 2005 Appl. Surf. Sci. 246 159
[13] Wada T, Kohara N, Nishiwaki S and Negami T 2001 Thin Solid Film. 387 118
[14] Guillemoles J F, Kronik L, Cahen D, Rau U, Jasenek A and Schock H W 2000 J. Phys. Chem. B 104 4849
[1] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[2] Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell
Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2022, 31(9): 097301.
[3] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[4] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[5] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[6] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[7] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[8] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[9] Effect of net carriers at the interconnection layer in tandem organic solar cells
Li-Jia Chen(陈丽佳), Guo-Xi Niu(牛国玺), Lian-Bin Niu(牛连斌), and Qun-Liang Song(宋群梁). Chin. Phys. B, 2022, 31(3): 038802.
[10] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[11] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[12] An n—n type heterojunction enabling highly efficientcarrier separation in inorganic solar cells
Gang Li(李刚), Yuqian Huang(黄玉茜), Rongfeng Tang(唐荣风), Bo Che(车波), Peng Xiao(肖鹏), Weitao Lian(连伟涛), Changfei Zhu(朱长飞), and Tao Chen(陈涛). Chin. Phys. B, 2022, 31(3): 038803.
[13] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
[14] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[15] A silazane additive for CsPbI2Br perovskite solar cells
Ruiqi Cao(曹瑞琪), Yaochang Yue(乐耀昌), Hong Zhang(张弘), Qian Cheng(程倩), Boxin Wang(王博欣), Shilin Li(李世麟), Yuan Zhang(张渊), Shuhong Li(李书宏), and Huiqiong Zhou(周惠琼). Chin. Phys. B, 2022, 31(11): 110101.
No Suggested Reading articles found!