Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 017304    DOI: 10.1088/1674-1056/22/1/017304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Impact of GaNAs strain compensation layer on the electronic structure of InAs/GaAs quantum dots

Song Xin (宋鑫), Feng Hao (冯淏), Liu Yu-Min (刘玉敏), Yu Zhong-Yuan (俞重远), Liu Jian-Tao (刘建涛)
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  The strain and electron energy levels of InAs/GaAs(001) quantum dots (QDs) with a GaNAs strain compensation layer (SCL) are investigated. The results show that both the hydrostatic and biaxial strain inside the QDs with a GaNAs SCL are reduced compared with those with GaAs capping layers. Moreover, most of the compressive strain in the growth surface is compensated by the tensile strain of the GaNAs SCL, which implies that the influence of the strain environment of underlying QDs upon the next-layer QDs' growth surface is weak and suggests that the homogeneity and density of QDs can be improved. Our results are consistent with the published experimental literature. A GaNAs SCL is shown to influence the strain and band edge. As is known, the strain and the band offset affect the electronic structure, which shows that the SCL is proved to be useful to tailor the emission wavelength of QDs. Our research helps to better understand how the strain compensation technology can be applied to the growth of stacked QDs, which are useful in solar cells and laser devices.
Keywords:  strain compensation layer      quantum dots      energy levels      electronic structure  
Received:  19 June 2012      Revised:  04 July 2012      Accepted manuscript online: 
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  73.63.Kv (Quantum dots)  
  72.25.Dc (Spin polarized transport in semiconductors)  
  85.35.Gv (Single electron devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60908028, 60971068, 10979065, and 61275201), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 2011RC0402), and the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-10-0261).
Corresponding Authors:  Liu Yu-Min     E-mail:  microliuyumin@hotmail.com

Cite this article: 

Song Xin (宋鑫), Feng Hao (冯淏), Liu Yu-Min (刘玉敏), Yu Zhong-Yuan (俞重远), Liu Jian-Tao (刘建涛) Impact of GaNAs strain compensation layer on the electronic structure of InAs/GaAs quantum dots 2013 Chin. Phys. B 22 017304

[1] Arakawa Y and Sakaki H 2002 Appl. Phys. Lett. 40 939
[2] Padiha L A, Neves A R, Rodriguez E, Cesar C L, Barbosa L C and Brito Cruz C H 2005 Appl. Phys. Lett. 86 161111
[3] Sugawara M, Ebe H, Hatori N and Ishida M 2004 Phys. Rev. B 69 35332
[4] Oshima R, Takata A and Shoji Y 2010 Physica E 42 2757
[5] Takata A, Ayami, Okada Y and Yoshitaka O 2001 Appl. Phys. Lett. 93 083111
[6] Hubbard S M, Cress C D, Bailey C G, Raffaelle R P, Bailey S G and Wilt D M 2008 Appl. Phys. Lett. 92 123512
[7] Oshima R, Hashimoto T, Shigekawa H and Okada Y 2006 J. Appl. Phys. 100 083110
[8] Tersoff J, Teichert C and Lagally M G 1996 Phys. Rev. Lett. 76 1675
[9] Wasilewski Z R, Fafard S and McCaffrey J P 1999 J. Cryst. Growth 201 1131
[10] Wang X D, Liu N, Shih C K, Govindaraju S and Holmes A L 2004 Appl. Phys. Lett. 85 1356
[11] Oshima R, Nakamura Y, Takata A and Okada Y 2008 J. Cryst. Growth 310 2234
[12] Oshima R, Takata A and Okada Y 2008 Appl. Phys. Lett. 93 083111
[13] Nuntawong N, Xin Y C, Birudavolu S, Huang P S, Hains C P and Huffaker D L 2005 Appl. Phys. Lett. 86 193115
[14] Ganapathy S, Zhang X Q, Uesugi K, Kumano H and Suemune I 2002 IEEE 18th International Semiconductor Laser Conference September 29-October 3, 2002 Garmisch-Partenkirchen, Germany, pp. 151,152
[15] Nabetani Y and Matsumoto T 2005 J. Appl. Phys. 98 063502
[16] Tatebayashi J, Nuntawong N, Wong P S, Xin Y C, Lester L F and Huffaker D L 2009 J. Phys. D: Appl. Phys. 42 073002
[17] Liu Y M, Yu Z Y and Ren X M 2008 Chin. Phys. Lett. 25 1850
[18] Takata A, Oshima R, Shoji Y and Okada Y 2009 J. Crys. Growth 311 1774
[19] Lin C H, Pai W W, Chang F Y and Lin H H 2007 Appl. Phys. Lett. 90 063102
[20] Akahane K, Yamamoto N, Gozu S, Ueta A and Ohtani N 2006 Physica E 32 81
[21] Nagarajan S, Aierken A and Jussila H 2011 Semicond. Sci. Technol. 26 1242
[22] Liu Y M, Yu Z Y and Ren X M 2008 Chin. Phys. Lett. 25 1850
[23] Liu Y M, Yu Z Y and Ren X M 2009 Chin. Phys. B 18 1056
[24] Oshima R, Nakamura Y, Takata A and Okada Y 2008 J. Crys. Growth 310 2234
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[4] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[5] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[6] Ridge regression energy levels calculation of neutral ytterbium (Z = 70)
Yushu Yu(余雨姝), Chen Yang(杨晨), and Gang Jiang(蒋刚). Chin. Phys. B, 2023, 32(3): 033101.
[7] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[8] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[9] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[10] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[11] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[12] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[13] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[14] Energy levels and transition data of 3p63d8 and 3p53d9 configurations in Fe-like ions (Z = 57, 60, 62, 64, 65)
Bao-Ling Shi(施宝玲), Yi Qin(秦毅), Xiang-Fu Li(李向富), Bang-Lin Deng(邓邦林), Gang Jiang(蒋刚), and Xi-Long Dou(豆喜龙). Chin. Phys. B, 2022, 31(5): 053102.
[15] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
No Suggested Reading articles found!