Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 087801    DOI: 10.1088/1674-1056/21/8/087801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles study of the elastic constants and optical properties of uranium metal

Chen Qiu-Yun (陈秋云), Tan Shi-Yong (谭世勇), Lai Xin-Chun (赖新春), Chen Jun (陈军)
Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621907, China
Abstract  We perform first-principles calculations of the lattice constants, elastic constants, and optical properties for alpha- and gamma-uranium based on the ultra-soft pseudopotential method. Lattice constants and equilibrium atomic volume are consistent pretty well with the experimental results. Some difference exists between our calculated elastic constants and the experimental data. Based on the satisfactory ground state electronic structure calculations, the optical conductivity, dielectric function, refractive index, and extinction coefficients are also obtained. These calculated optical properties are compared with our results and other published experimental data.
Keywords:  uranium      electronic structure      elastic constants      optical properties  
Received:  15 December 2011      Revised:  06 January 2012      Accepted manuscript online: 
PACS:  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  71.20.Gj (Other metals and alloys)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 91026016).
Corresponding Authors:  Chen Qiu-Yun     E-mail:  sheqiuyun@126.com

Cite this article: 

Chen Qiu-Yun (陈秋云), Tan Shi-Yong (谭世勇), Lai Xin-Chun (赖新春), Chen Jun (陈军) First-principles study of the elastic constants and optical properties of uranium metal 2012 Chin. Phys. B 21 087801

[1] Artioukov I A, Fechtchenko R M and Udovskii A L 2004 Nucl. Instrum. Methods Phys. Res. A 372 517
[2] Artioukov I A, Chefonov O V, Gilev O N, Lipin A V and Oatashev V I 2007 Nucl. Instrum. Methods Phys. Res. A 575 248
[3] Schoenes J 1978 J. Appl. Phys. 49 1463
[4] Meek T T and Roedern B 2009 Vacuum 83 226
[5] Meek T T, Roedern B, Clem P G and Hanrahan R J Jr 2005 Mater. Lett. 59 1085
[6] Faldt A and Nilsson P O 1980 J. Phys. F: Met. Phys. 10 2573
[7] Siekhaus W and Nelson A 2005 Materials Research Society Fall 2005, Boston, MA, United States. November 28, 2005 through December 2, 2005. UCRL-PROC-217595
[8] Lin L, Lai X, Lü X and Zhang H 2008 Surf. Interface Anal. 40 645
[9] Ritchie A G 1984 J. Nucl. Mater. 120 143
[10] Yang Y P, Feng S, Feng H, Pan X C, Wang Y Q and Wang W Z 2011 Acta Phys. Sin. 60 027802 (in Chinese)
[11] Zeng L G, Liu F M, Zhong W W, Ding P, Cai L G and Zhou C C 2011 Acta Phys. Sin. 60 038203 (in Chinese)
[12] Di G Q 2011 Acta Phys. Sin. 60 038101 (in Chinese)
[13] Ma X F, Wang Y Z and Zhou C Y 2011 Acta Phys. Sin. 60 068102 (in Chinese)
[14] Su R, He J, Chen J S and Guo Y J 2011 Acta Phys. Sin. 60 107101 (in Chinese)
[15] Li D and Zhang X H 2011 Acta Phys. Sin. 60 126102 (in Chinese)
[16] Gasche T, Brooks M S and Johansson B 1996 Phys. Rev. B 54 2446
[17] Wills J M and Eriksson O 1992 Phys. Rev. B 45 13879
[18] Söderlind P, Eriksson O, Johansson B and Wills J M 1994 Phys. Rev. B 50 7291
[19] Jones M D, Boettger J C, Albers R C and Singh D J 2000 Phys. Rev. B 61 4644
[20] Söderlind P, Eriksson O, Johansson B, Wills J M and Boring A M 1995 Nature 374 524
[21] Söderlind P 2002 Phys. Rev. B 66 085113
[22] Taylor C D 2008 Phys. Rev. B 77 094119
[23] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[24] Mattsson A E, Schultz P A, Desjarlais M P, Mattsson T R and Leung K 2005 Mater. Sci. Eng. 13 R1
[25] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[26] Vanderbilt D 1990 Phys. Rev. B 41 7892
[27] Laasonen K, Pasquarello A, Car R, Lee C and Vanderbilt D 1993 Phys. Rev. B 47 10142
[28] Puddu G 2009 Eur. Phys. J. A 39 335
[29] Crocombette J P, Jollet F, Nga L T and Petit A 2001 Phys. Rev. B 64 104107
[30] Barret C S, Muller M H and Hitterman R H 1963 Phys. Rev. B 129 625
[31] Fisher E S and McSkimin H J 1958 J. Appl. Phys. 29 1473
[32] Veal B W and Lam D J 1994 Phys. Rev. B 10 4902
[33] Schoenes J 1980 Phys. Rep. 63 301
[34] Fäldt P and Nilsson O 1980 J. Phys. F 10 2573
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Atomic simulations of primary irradiation damage in U-Mo-Xe system
Wen-Hong Ouyang(欧阳文泓), Jian-Bo Liu(刘剑波), Wen-Sheng Lai(赖文生),Jia-Hao Li(李家好), and Bai-Xin Liu(柳百新). Chin. Phys. B, 2023, 32(3): 036101.
[3] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[4] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[5] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[6] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[7] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[8] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[9] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[10] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[11] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[12] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[13] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[14] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[15] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
No Suggested Reading articles found!