Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 075202    DOI: 10.1088/1674-1056/21/7/075202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Numerical study on characteristics of nitrogen discharge at high pressure with induced plasma

Wang Yi-Nan(王一男), Liu Yue(刘悦), Zheng Shu(郑殊), and Lin Guo-Qiang(林国强)
Key Laboratory of Materials Modification by Laser Ion and Electron Beams, Dalian University of Technology, Dalian 116024, China
Abstract  Based on the fluid theory of plasma, a model is built to study the characteristics of nitrogen discharge at high pressure with induced argon plasma. In the model, the spices such as electron, N2+, N4+, Ar+, and two metastable states (N2 (A3u+), N2 (a1u-)) are taken into account. The model includes particle's continuity equations, electron's energy balance equation, and Poisson equation. The model is solved with a finite difference method. The numerical results are obtained and used to investigate the effect of time taken to add nitrogen gas and initially-induced argon plasma pressure. It is found that lower speeds of adding the nitrogen gas and varying the gas pressure can induce higher plasma density, and inversely lower electron temperature. At high-pressure discharge, the electron density increases when the proportion of nitrogen component is below 40%, while the electron density will keep constant as the nitrogen component further increases. It is also shown that with the increase of initially-induced argon plasma pressure, the density of charged particles increases, and the electron temperature as well as the electric field decrease.
Keywords:  induced plasma      nitrogen discharge      numerical simulation  
Received:  09 November 2011      Revised:  09 February 2012      Accepted manuscript online: 
PACS:  52.65.-y (Plasma simulation)  
  52.80.Pi (High-frequency and RF discharges)  
  52.77.Fv (High-pressure, high-current plasmas)  
Fund: Project supported by the National Science Foundation of China (Grant No. 10675029), the National Basic Research Program of China (Grant Nos. 2008CB717801, 2008CB787103, 2009GB105004, and 2010GB106002), and FRFCU (Grant No. DUT12ZD201).
Corresponding Authors:  Liu Yue     E-mail:  liuyue@dlut.edu.cn

Cite this article: 

Wang Yi-Nan(王一男), Liu Yue(刘悦), Zheng Shu(郑殊), and Lin Guo-Qiang(林国强) Numerical study on characteristics of nitrogen discharge at high pressure with induced plasma 2012 Chin. Phys. B 21 075202

[1] Corbella C, Rubio-Roy M, Bertran E and And鷍ar J L 2009 J. Appl. Phys. 106 033302
[2] Goto H H, Lowe H D and Ohmi T 1993 IEEE Trans. Semicond. Manuf. 6 58
[3] Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (NewYork: Wiley-Interscience) p. 1 (in Chinese)
[4] Kogoma M and Okazaki S 1994 J. Phys. D 24 1985
[5] Ding L L, Xu L, Zhang R, Liu P and Zhan R J 2004 Chin. Phys. 13 0913
[6] Sheng Z M, Mima K, Senloku Y, Jovanović M S, Taguchi T, Zhang J and Meyer-ter-Vehn J 2002 Phys. Rev. Lett. 88 055004
[7] J Yang, He H Q, Mao G W and Shi S L 1998 J. Propulsion Technol. 19 21 (in Chinese)
[8] Suits C G 1939 J. Appl. Phys.10 648
[9] Gambling W A and Edels H 1953 J. Appl. Phys. 5 36
[10] Haas R A 1973 Phys. Rev. A 8 1017
[11] Geng Y M, Lu C H, Liang M and Zhang W 2010 Plasma Sci. Technol. 12 715
[12] Dong L F, Mao Z G and Ran J X 2005 Chin. Phys. 14 1618
[13] Zhu X M and Kong M G 2005 J. Appl. Phys. 97 083301
[14] Shang W L, Wang D Z and Zhang Y T 2008 Phys. Plasmas 15 093003
[15] Massines F, Segur P, Gherardi N, Khamphan C and Ricard A 2003 Surf. Coat. Tech. 174 8
[16] Walsh J L, Shi J J and Kong M G 2006 Appl. Phys. Lett. 88 17150
[17] Yang W D, Wang P N, Liu Z P, Mi L and Li F M 2002 Chin. Phys. 11 0260
[18] Shi J J, Ca Y Q, Zhang J, Ding K and Zhang J 2009 Phys. Plasmas 16 070702
[19] Li H P, Sun W T, Wang H B, Li G and Bao C Y 2007 Plasma Chem. Plasma P. 27 529
[20] Li H P, Li G, Wang S, Le P S and Bao C Y 2008 IEEE Trans. Plasma Sci. 36 4
[21] Yu Q, Deng Y F, Liu Y and Han W X 2008 Chin. Phys. Lett. 25 2569
[22] Dimitris P L and Demetre J E 1993 J. Appl. Phys. 73 3668
[23] You Z W 2009 The Fluid simulation of N2-O2 Dual-Frequency Capacitively Coupled Plasma (MS thesis) (Dalian: Dalian University of Technology)
[24] Deng Y F, Han X W, Shafiq-ur Rehman and Liu Y 2008 Phys. Plasmas 15 053507
[25] Bogaerts A 2004 Spectrochim. Acta B 9 126
[26] Uchida Y, Takaki K, Urashima K and Chang J S 2004 IEEEE Transacitions on Dielectrics and Electrial Insulation 11 491
[27] Gao F, Mao M, Ding Z F and Wang Y N 2008 Acta Phys. Sin. 57 5123 (in Chinese)
[28] Wang Y H and Wang D Z 2003 Acta Phys. Sin. 52 1694 (in Chinese)
[29] Brunet and Serra J Rocca 1984 J. Appl. Phys. 57 1574
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[3] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[4] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[5] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[6] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[7] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[8] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[9] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[10] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[11] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[12] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[13] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[14] Numerical simulation of chorus-driving acceleration of relativistic electrons at extremely low L-shell during geomagnetic storms
Zhen-Xia Zhang(张振霞), Ruo-Xian Zhou(周若贤), Man Hua(花漫), Xin-Qiao Li(李新乔), Bin-Bin Ni(倪彬彬), and Ju-Tao Yang(杨巨涛). Chin. Phys. B, 2021, 30(10): 109401.
[15] Numerical research on effect of overlap ratio on thermal-stress behaviors of the high-speed laser cladding coating
Xiaoxi Qiao(乔小溪), Tongling Xia(夏同领), and Ping Chen(陈平). Chin. Phys. B, 2021, 30(1): 018104.
No Suggested Reading articles found!