Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 067103    DOI: 10.1088/1674-1056/21/6/067103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Comparative study of adsorption characteristics of Cs on the GaN (0001) and GaN (0001) surfaces

Du Yu-Jie(杜玉杰)a)b), Chang Ben-Kang(常本康)a)†, Wang Hong-Gang(王洪刚)a), Zhang Jun-Ju(张俊举)a), and Wang Mei-Shan(王美山) c)
a. Department of Physics and Electronic Sciences, Institute of Bingzhou, Bingzhou 256603, China;
b. Institute of Electronic Engineering and Opto-Electric Technology, Nanjing University ofScience and Technology, Nanjing 210094, China;
c. School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
Abstract  The adsorption characteristics of Cs on GaN (0001) and GaN (0001) surfaces with a coverage from 1/4 to 1 monolayer have been investigated using the density functional theory with a plane-wave ultrasoft pseudopotential method based on first-principles calculations. The results show that the most stable position of the Cs adatom on the GaN (0001) surface is at the N-bridge site for 1/4 monolayer coverage. As the coverage of Cs atoms at the N-bridge site is increased, the adsorption energy reduces. As the Cs atoms achieve saturation, the adsorption is no longer stable when the coverage is 3/4 monolayer. The work function achieves its minimum value when the Cs adatom coverage is 2/4 monolayer, and then rises with Cs atomic coverage. The most stable position of Cs adatoms on the GaN (0001) surface is at H3 site for 1/4 monolayer coverage. As the Cs atomic coverage at H3 site is increased, the adsorption energy reduces, and the adsorption is still stable when the Cs adatom coverage is 1 monolayer. The work function reduces persistently, and does not rise with the increase of Cs coverage.
Keywords:  GaN surface      electronic structure      adsorption energy      work function  
Received:  28 January 2012      Revised:  28 February 2012      Accepted manuscript online: 
PACS:  71.55.Eq (III-V semiconductors)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60871012 and 61171042), the Natural Science Foundation of Shandong Province of China (Grant No. ZR2010FL018), and the Higher Educational Science and Technology Program of Shandong Province, China (Grant No. J10LG74).
Corresponding Authors:  Chang Ben-Kang     E-mail:  bkchang@mail.njust.edu.cn

Cite this article: 

Du Yu-Jie(杜玉杰), Chang Ben-Kang(常本康), Wang Hong-Gang(王洪刚), Zhang Jun-Ju(张俊举), and Wang Mei-Shan(王美山) Comparative study of adsorption characteristics of Cs on the GaN (0001) and GaN (0001) surfaces 2012 Chin. Phys. B 21 067103

[1] Fu X Q, Chang B K, Li B, Wang X H and Qiao J L 2011 Acta Phys. Sin. 60 038503 (in Chinese)
[2] Toru A, Daisuke A, Kohji N and Tomonori I 2010 Phys. Rev. B 81 245317
[3] Li Y H, Pan H H and Xu P S 2005 Acta Phys. Sin. 54 317 (in Chinese)
[4] Bar-Ilan A H, Zamir S, Katz O, Meyler B and Salzman J 2001 Mater. Sci. Eng. A 302 14
[5] Cao Z F, Lin Z J, L? Y J, Luan C B, Yu Y X, Chen H and Wang Z G 2012 Chin. Phys. B 21 017103
[6] Zhao H P, Liu G Y and Tansu N 2010 Appl. Phys. Lett. 97 131114
[7] Chow W W 2011 Opt. Express 19 21818
[8] Farrell R M, Hsu P S, Haeger D A, Fujito K, DenBaars S P, Speck J S and Nakamura S 2010 Appl. Phys. Lett. 96 231113
[9] Zhang J, Zhao H P and Tansu N 2011 Appl. Phys. Lett. 98 171111
[10] Wang X H, Chang B K, Du Y J and Qiao J L 2011 Appl. Phys. Lett. 98 042102
[11] Wang X H, Chang B K, Ren L and Gao P 2011 Appl. Phys. Lett. 98 082109
[12] Wu C I and Kahn A 1999 J. Appl. Phys. 86 3209
[13] Machuca F, Sun Y, Liu Z, Ioakeimidi K, Pianetta P and Pease R F W 2002 J. Vac. Sci. Technol. B 20 2721
[14] Turnbull A A and Evans G B 1968 J. Phys. G: Nucl. Part. Phys. 1 155
[15] Tremsin A S and Siegmund O H W 2005 Proceedings of SPIE 5920 59200I
[16] Maruyama T, Brachmann A, Clendenin J E, Desikan T, Garwin E L, Kirby R E, Luh D A, Turner J and Prepost R 2002 Nucl. Instrum. Methods Phys. Res. A 492 199
[17] Siegmund O, Vallerga J, McPhate J, Malloy J, Tremsin A, Martin A, Ulmer M and Wessels B 2006 Nucl. Instrum. Methods Phys. Res. A 567 89
[18] Du D C, Zhang J C, Ou X X, Wang H, Chen K, Xue J S, Xu S R and Hao Y 2011 Chin. Phys. B 20 037805
[19] Du Y J, Chang B K, Wang X H, Zhang J J, Li B and Fu X Q 2012 Acta Phys. Sin. 61 057102 (in Chinese)
[20] Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[21] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[22] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[23] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[24] Perlin P, Jauberthie-Carillon C, Itie J P, San Miguel A, Grze-gory I and Polian A 1992 Phys. Rev. B 45 83
[25] Rosa A L and Neugebauer J 2006 Phys. Rev. B 73 205346
[26] Kampen T U, Eyckeler M and MÖnch W 1998 Appl. Surf. Sci. 123 28
[27] Gonz醠ez-Hern醤dez R and L髉ez-P閞ez W 2010 Phys. Rev. B 81 195407
[28] Liu Z, Machuca F and Pianetta P 2004 Appl. Phys. Lett. 85 1541
[29] Benemanskaya G V, Vikhnin V S, Shmidt N M, Frank-Kamenetskaya G E and Afanasiev I V 2004 Appl. Phys. Lett. 85 1365
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Electron emission induced by keV protons from tungsten surface at different temperatures
Li-Xia Zeng(曾利霞), Xian-Ming Zhou(周贤明), Rui Cheng(程锐), Yu Liu(柳钰), Xiao-An Zhang(张小安), and Zhong-Feng Xu(徐忠锋). Chin. Phys. B, 2022, 31(7): 073202.
[4] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[5] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[6] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[7] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[8] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[9] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[10] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[11] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[12] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[13] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[14] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[15] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
No Suggested Reading articles found!