CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Influence of a two-dimensional electron gas on current–voltage characteristics of Al0.3Ga0.7 N/GaN high electron mobility transistors |
Ji Dong(冀东)a), Liu Bing(刘冰)a), Lu Yan-Wu(吕燕伍)a)†, Zou Miao(邹杪)b), and Fan Bo-Ling(范博龄)a) |
a. School of Science, Beijing Jiaotong University, Beijing 100044, China;
b. School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China |
|
|
Abstract The J-V characteristics of AltGa1-tN/GaN high electron mobility transistors (HEMTs) are investigated and simulated using the self-consistent solution of the Schrödinger and Poisson equations for a two-dimensional electron gas (2DEG) in a triangular potential well with the Al mole fraction t=0.3 as an example. Using a simple analytical model, the electronic drift velocity in a 2DEG channel is obtained. It is found that the current density through the 2DEG channel is on the order of 1013 A/m2 within a very narrow region (about 5 nm). For a current density of 7 $\times$ 1013 A/m2 passing through the 2DEG channel with a 2DEG density of above 1.2 $\times$ 1017 m-2 under a drain voltage Vds=1.5 V at room temperature, the barrier thickness Lb should be more than 10 nm and the gate bias must be higher than 2 V.
|
Received: 03 August 2011
Revised: 28 November 2011
Accepted manuscript online:
|
PACS:
|
72.80.Ey
|
(III-V and II-VI semiconductors)
|
|
73.40.-c
|
(Electronic transport in interface structures)
|
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60976070) and the Excellent Science and Technology Innovation Program from Beijing Jiaotong University, China. |
Corresponding Authors:
Lü Yan-Wu
E-mail: ywlu@bjtu.edu.cn
|
Cite this article:
Ji Dong(冀东), Liu Bing(刘冰), Lu Yan-Wu(吕燕伍), Zou Miao(邹杪), and Fan Bo-Ling(范博龄) Influence of a two-dimensional electron gas on current–voltage characteristics of Al0.3Ga0.7 N/GaN high electron mobility transistors 2012 Chin. Phys. B 21 067201
|
[1] |
Feng M, Shen S C, Caruth D C and Huang J J 2004 Proc. IEEE 92 354
|
[2] |
Johnson J W, Piner E L, Vescan A, Therrien R, Rajagopal P, Roberts J C, Brown J D, Singhal S and Linthicum K J 2004 IEEE Electron Dev. Lett. 25 459
|
[3] |
Nagy W, Brown J, Borges R and Singhal S 2003 IEEE Trans. Microwave Theory Tech. 51 660
|
[4] |
Holzworth M R, Rudawski N G, Pearton S J, Jones K S, Lu L, Kang T S, Ren F and Johnson J W 2011 Appl. Phys. Lett. 98 122103
|
[5] |
Cheng Z Q, Zhou X P, Hu S, Zhou W J and Zhang S 2010 Acta Phys. Sin. 59 1252 (in Chinese)
|
[6] |
Asif K M, Bhattarai A, Kuznia J N and Olson D T 1993 Appl. Phys. Lett. 63 1214
|
[7] |
Wu Y F, Kapolnek D, Ibbetson J P, Parikh P, Keller B P and Mishra U K 2001 IEEE Trans. Electron Dev. 48 2181
|
[8] |
Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W and Hilsenbeck J 1999 J. Appl. Phys. 85 3222
|
[9] |
Cao Y and Jena D 2007 Appl. Phys. Lett. 90 182112
|
[10] |
Liu B, Lu Y W, Jin G R, Zhao Y, Wang X L, Zhu Q S and Wang Z G 2010 Appl. Phys. Lett. 97 262111
|
[11] |
Gao Z Y, Hao Y, Zhang J C, Li P X and Gu W P 2009 Chin. Phy. B 18 4970
|
[12] |
Wang C, Quan S, Ma X H, Hao Y, Zhang J C and Mao W 2010 Acta Phys. Sin. 59 7333 (in Chinese)
|
[13] |
Ni J Y, Hao Y, Zhang J C, Duan H T and Zhang J F 2009 Acta Phys. Sin. 58 4925 (in Chinese)
|
[14] |
Jena D, Gossard A C and Mishra U K 2000 Appl. Phys. Lett. 76 1707
|
[15] |
Zhang J C, Zheng P T, Zhang J, Xu Z H and Hao Y 2009 Chin. Phys. B 18 2998
|
[16] |
Moradi M and Valizaden P 2011 J. Appl. Phys. 109 024509
|
[17] |
Koudymov A, Shur M, Simin G, Chu K, Chao P, Lee C, Jimenez J and Balistreri A 2008 IEEE Trans. Electron Dev. 55 712
|
[18] |
Shey A and Ku W 1989 IEEE Trans. Electron Dev. 36 2299
|
[19] |
Barnham K and Vvedensky D 2001 Low-Dimensional Semiconductor Structures (New York: Cambridge University Press) p. 62
|
[20] |
Cao Y, Xing H and Jena D 2010 Appl. Phys. Lett. 97 222116
|
[21] |
Hedin L and Lundqvist B I 1971 J. Phys. C 4 2064
|
[22] |
Starikov E, Shiktorov P, Gruinskis V, Varani L, Vaissiere J C, Palermo C and Reggiani L 2005 J. Appl. Phys. 98 083701
|
[23] |
Jovanovic V D, Ikonic Z, Indjin D, Harrison P, Milanovic V and Soref R A 2003 J. Appl. Phys. 93 3194
|
[24] |
Xu X, Liu X, Yang S, Liu J, Wei H, Zhu Q and Wang Z 2009 Appl. Phys. Lett. 94 112102
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|