Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 056601    DOI: 10.1088/1674-1056/21/5/056601
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Ab initio study of H and He migrations in β-phase Sc, Y, and Er hydrides

Chen Ru-Cheng(陈汝承)a), Yang Li(杨莉)ab)†, Dai Yun-Ya(代云雅)a), Zhu Zi-Qiang(朱自强)a), Peng Shu-Ming(彭述明)c), Long Xing-Gui(龙兴贵)c), Gao Fei(高飞)b)†, and Zu Xiao-Tao(祖小涛)a)
a. Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, China;
b. Pacific Northwest National Laboratory, P. O. Box 999, Richland WA 99352, USA;
c. Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  Ab initio calculations based on the density functional theory have been performed to investigate the migrations of hydrogen (H) and helium (He) atoms in β -phase scandium (Sc), yttrium (Y), and erbium (Er) hydrides with three different ratios of H to metal. The results show that the migration mechanisms of H and He atoms mainly depend on the crystal structures of hydrides, but their energy barriers are affected by the host-lattice in metal hydrides. The formation energies of octahedral-occupancy H (Hoct) and tetrahedral vacancy (Vmtet) pairs are almost the same (about 1.2 eV). It is of interest to note that the migration barriers of H increase with increasing host-lattice atomic number. In addition, the results show that the favorable migration mechanism of He depends slightly on the Vmtet in the Sc hydride, but strongly on that in the Y and Er hydrides, which may account for different behaviours of initial He release from ScT2 and ErT2.
Keywords:  hydrogen      helium      metal hydride      ab initio calculation  
Received:  01 November 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  66.30.J- (Diffusion of impurities ?)  
  88.30.rd (Inorganic metal hydrides)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10976007), the Fundamental Research Funds for the Central Universities (Grant No. ZYGX2009J040), the Science and Technology Foundation of China Academy of Engineering Physics (Grant No. 2009A0301015), and the US Department of Energy, Office of Fusion Energy Science (under Contract DE-AC06-76RLO 1830).

Cite this article: 

Chen Ru-Cheng(陈汝承), Yang Li(杨莉), Dai Yun-Ya(代云雅), Zhu Zi-Qiang(朱自强), Peng Shu-Ming(彭述明), Long Xing-Gui(龙兴贵), Gao Fei(高飞), and Zu Xiao-Tao(祖小涛) Ab initio study of H and He migrations in β-phase Sc, Y, and Er hydrides 2012 Chin. Phys. B 21 056601

[1] Grimshaw J A, Spoone F J, Wilson C G and Mequillan A D 1981 J. Mater. Sci. 16 2855
[2] Wixom R R, Browning J F, Snow C S, Schultz P A and Jennison D R 2008 J. Appl. Phys. 103 123708
[3] Lundin C E 1968 Trans. Metall. Soc. AIME 242 1161
[4] Lundin C E 1968 Trans. Metall. Soc. AIME 242 903
[5] Sun S N, Wang Y and Chou M Y 1994 Phys. Rev. B 49 6481
[6] Snow C S and Mattsson T 2008 HHIM Conference Presentation Archive (Sandia National Laboratory) p. 2743
[7] Zhou H B, Liu Y L, Jin S, Zhang Y, Lu G H and Luo G N 2010 Nucl. Fusion 50 025016
[8] Liu Y L, Zhou H B, Jin S, Zhang Y and Lu G H 2010 Chin. Phys. Lett. 27 127101
[9] Duan C, Liu Y L, Zhou H B, Zhang Y, Jin S, Lu G H 2010 J. Nucl. Mater. 404 119
[10] Lu G X, Zhang H, Zhang G Y, Liang T, Li D, Zhu S L 2011 Acta Phys. Sin. 11 117101 (in Chinese)
[11] Mitchell D J and Provo J L 1985 J. Appl. Phys. 57 1855
[12] Blaschko O, Pleschiutschnig J, Glas R and Weinzierl P 1991 Phys. Rev. B 44 9164
[13] Prem M, Krexner G and Pleschiutschnig J 2003 J. Alloys. Compd. 356 683
[14] Zhang L, Shu X L, Jin S, Zhang Y and Lu G H 2010 J. Phys.:Condens. Mat. 22 375401
[15] Xia J X, Hu W Y, Yang J Y, Ao B Y and Wang X L 2006 Phys. Status Solidi B 243 579
[16] Zhang B L, Wang J and Hou Q 2011 Chin. Phys. B 20 036105
[17] Snow C S, Brewer L N, Gelles D S, Rodriguez M A, Kotula P G, Banks J C, Mangan M A and Browning J F 2008 J. Nucl. Mater. 374 147
[18] Yang L, Peng S M, Long X G, Gao F, Heinisch H L, Kurtz R J and Zu X T 2011 J. Phys.:Condens. Mat. 23 035701
[19] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[20] Blochl P E 1994 Phys. Rev. B 50 17953
[21] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[22] Snow C S, Schultz P and Mattsson T 2010 Proposed for Presentation at the Hydrogen and Helium Isotopes in Materials Conference, April 20--21, 2010, Oak Ridge, p. 2803
[23] Henkelman G., Uberuaga B and Jonsson H 2000 J. Chem. Phys. 113 9901
[24] Beavis L C 1980 SAND 79-0645
[25] Fu C C and Willaime F J 2007 Nucl. Mater. 367 244
[1] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[2] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[3] Fine and hyperfine structures of pionic helium atoms
Zhi-Da Bai(白志达), Zhen-Xiang Zhong(钟振祥), Zong-Chao Yan(严宗朝), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2023, 32(2): 023601.
[4] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[5] Synthesis of hexagonal boron nitride films by dual temperature zone low-pressure chemical vapor deposition
Zhi-Fu Zhu(朱志甫), Shao-Tang Wang(王少堂), Ji-Jun Zou(邹继军), He Huang(黄河), Zhi-Jia Sun(孙志嘉), Qing-Lei Xiu(修青磊), Zhong-Ming Zhang(张忠铭), Xiu-Ping Yue(岳秀萍), Yang Zhang(张洋), Jin-Hui Qu(瞿金辉), and Yong Gan(甘勇). Chin. Phys. B, 2022, 31(8): 086103.
[6] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[7] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[8] Helium bubble formation and evolution in NiMo-Y2O3 alloy under He ion irradiation
Awen Liu(刘阿文), Hefei Huang(黄鹤飞), Jizhao Liu(刘继召), Zhenbo Zhu(朱振博), and Yan Li(李燕). Chin. Phys. B, 2022, 31(4): 046102.
[9] Spatial characteristics of nanosecond pulsed micro-discharges in atmospheric pressure He/H2O mixture by optical emission spectroscopy
Chuanjie Chen(陈传杰), Zhongqing Fang(方忠庆), Xiaofang Yang(杨晓芳), Yongsheng Fan(樊永胜), Feng Zhou(周锋), and Rugang Wang(王如刚). Chin. Phys. B, 2022, 31(2): 025204.
[10] Development of a cryogen-free dilution refrigerator
Zhongqing Ji(姬忠庆), Jie Fan(樊洁), Jing Dong(董靖), Yongbo Bian(边勇波), and Zhi-Gang Cheng(程智刚). Chin. Phys. B, 2022, 31(12): 120703.
[11] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[12] C9N4 as excellent dual electrocatalyst: A first principles study
Wei Xu(许伟), WenWu Xu(许文武), and Xiangmei Duan(段香梅). Chin. Phys. B, 2021, 30(9): 096802.
[13] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[14] Role of graphene in improving catalytic behaviors of AuNPs/MoS2/Gr/Ni-F structure in hydrogen evolution reaction
Xian-Wu Xiu(修显武), Wen-Cheng Zhang(张文程), Shu-Ting Hou(侯淑婷), Zhen Li(李振), Feng-Cai Lei(雷风采), Shi-Cai Xu(许士才), Chong-Hui Li(李崇辉), Bao-Yuan Man(满宝元), Jing Yu(郁菁), and Chao Zhang(张超). Chin. Phys. B, 2021, 30(8): 088801.
[15] Evolution of helium bubbles in nickel-based alloy by post-implantation annealing
Rui Zhu(朱睿), Qin Zhou(周钦), Li Shi(史力), Li-Bin Sun(孙立斌), Xin-Xin Wu(吴莘馨), Sha-Sha Lv(吕沙沙), and Zheng-Cao Li(李正操). Chin. Phys. B, 2021, 30(8): 086102.
No Suggested Reading articles found!