Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 025204    DOI: 10.1088/1674-1056/ac2e62
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Spatial characteristics of nanosecond pulsed micro-discharges in atmospheric pressure He/H2O mixture by optical emission spectroscopy

Chuanjie Chen(陈传杰)1, Zhongqing Fang(方忠庆)1, Xiaofang Yang(杨晓芳)1, Yongsheng Fan(樊永胜)2, Feng Zhou(周锋)1,†, and Rugang Wang(王如刚)1
1 School of Information Engineering, Yancheng Institute of Technology, Yancheng 224051, China;
2 School of Automotive Engineering, Yancheng Institute of Technology, Yancheng 224051, China
Abstract  Atmospheric pressure micro-discharges in helium gas with a mixture of 0.5% water vapor between two pin electrodes are generated with nanosecond overvoltage pulses. The temporal and spatial characteristics of the discharges are investigated by means of time-resolved imaging and optical emission spectroscopy with respect to the discharge morphology, gas temperature, electron density, and excited species. The evolution of micro-discharges is captured by intensified CCD camera and electrical properties. The gas temperature is diagnosed by a two-temperature fit to the ro-vibrational OH(A2Σ+-X2Π, 0-0) emission band and is found to remain low at 425 K during the discharge pulses. The profile of electron density performed by the Stark broadening of Hα 656.1-nm and He I 667.8-nm lines is uniform across the discharge gap at the initial of discharge and reaches as high as 1023 m-3. The excited species of He, OH, and H show different spatio-temporal behaviors from each other by the measurement of their emission intensities, which are discussed qualitatively in regard of their plasma kinetics.
Keywords:  atmospheric pressure micro-discharges      nanosecond repetitively pulsed discharge      helium      optical emission spectroscopy  
Received:  29 August 2021      Revised:  28 September 2021      Accepted manuscript online:  11 October 2021
PACS:  52.50.Dg (Plasma sources)  
  52.70.Kz (Optical (ultraviolet, visible, infrared) measurements)  
  82.33.Xj (Plasma reactions (including flowing afterglow and electric discharges))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51806186), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 20KJB140025), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20181050), and the Scientific Research Project for the Introduction Talent of Yancheng Institute of Technology (Grant No. XJR2020).
Corresponding Authors:  Feng Zhou     E-mail:  zfycit@ycit.edu.cn

Cite this article: 

Chuanjie Chen(陈传杰), Zhongqing Fang(方忠庆), Xiaofang Yang(杨晓芳), Yongsheng Fan(樊永胜), Feng Zhou(周锋), and Rugang Wang(王如刚) Spatial characteristics of nanosecond pulsed micro-discharges in atmospheric pressure He/H2O mixture by optical emission spectroscopy 2022 Chin. Phys. B 31 025204

[1] Bruggeman P J, Iza F and Brandenburg R 2017 Plasma Sources Sci. Technol. 26 123002
[2] Shao T, Wang R, Zhang C and Yan P 2018 High Volt. 3 14
[3] Li H, Yu D, Sun W, Liu D, Li J, Han X, Li Z, Sun B and Wu Y 2016 High Voltage Eng. 21 3697
[4] Bruggeman P J and Brandenburg R 2013 J. Phys. D:Appl. Phys. 46 464001
[5] Park G Y, Park S J, Choi M Y, Koo I G, Byun J H, Hong J W, Sim J Y, Collins G J and Lee J K 2012 Plasma Sources Sci. Technol. 21 043001
[6] Wang R, Xu H, Zhao Y, Zhu W, Ostrikov K and Shao T 2018 J. Phys. D:Appl. Phys. 52 074002
[7] Zhang L, Yang D, Wang S, Jia Z, Yuan H, Zhao Z and Wang W 2019 Nanomaterials 9 1381
[8] Huang B D, Takashima K, Zhu X M and Pu Y K 2014 IEEE Trans. Plasma Sci. 42 2642
[9] Pai D Z, Lacoste D A and Laux C O 2010 Plasma Sources Sci. Technol. 19 065015
[10] Verreycken T, van der Horst R M, Baede A H F M, van Veldhuizen E M and Bruggeman P J 2012 J. Phys. D:Appl. Phys. 45 045205
[11] Lo A, Cessou A, Lacour C, Lecordier B, Boubert P, Xu D A, Laux C O and Vervisch P 2017 Plasma Sources Sci. Technol. 26 045012
[12] Rusterholtz D L, Lacoste D A, Stancu G D, Pai D Z and Laux C O 2013 J. Phys. D:Appl. Phys. 46 464010
[13] Shao T, Zhang C, Niu Z, Yan P, Tarasenko V F, Baksht E Kh, Burahenko A G and Shutko Y V 2011 Appl. Phys. Lett. 98 021503
[14] Huang B D, Takashima K, Zhu X M and Pu Y K 2014 J. Phys. D:Appl. Phys. 47 422003
[15] Minesi N, Stepanyan S, Mariotto P, Stancu G D and Laux C O 2020 Plasma Sources Sci. Technol. 29 085003
[16] van der Horst R M, Verreycken T, van Veldhuizen E M and Bruggeman P J 2012 J. Phys. D:Appl. Phys. 45 345201
[17] Burnette D, Montello A, Adamovich I V and Lempert W R 2014 Plasma Sources Sci. Technol. 23 045007
[18] Simeni M S, Laux C O and Stancu G D 2017 J. Phys. D:Appl. Phys. 50 274004
[19] Verreycken T, van der Horst R M, Baede A H F M, van Veldhuizen E M and Bruggeman P J 2012 J. Phys. D:Appl. Phys. 45 045205
[20] Jung Y H, Jang S O and You H J 2013 Chin. Phys. Lett. 30 065204
[21] Qian M Y, Yang C Y, Wang Z D, Chen X C, Liu S Q and Wang D Z 2016 Chin. Phys. B 25 015202
[22] Verreycken T, Sadeghi N and Bruggeman P J 2014 Plasma Sources Sci. Technol. 23 045005
[23] Chen C, Fan Y, Fang Z, Wang Y, Kong W, Zhou F and Wang R 2021 Spectrosc. Spect. Anal. 41 2337
[24] NIST Atomic Spectra Database (ver. 5.7):http://physics.nist.gov/asd
[25] Raizer Y R 1991 Gas Discharge Physics (Berlin:Springer)
[26] Chen C J, Simeni M S, Li S Z, Barnat E V and Bruggeman P J 2020 Plasma Sources Sci. Technol. 29 035020
[27] Huang B D, Takashima K, Zhu X M and Pu Y K 2014 IEEE Trans. Plasma Sci. 42 2642
[28] Bruggeman P J, Sadeghi N, Schram D C and Linss V 2014 Plasma Sources Sci. Technol. 23 023001
[29] Copeland R A, Dyer M J and Crosley D R 1985 J. Chem. Phys. 82 4022
[30] Nikiforov A Y, Leys C, Gonzalez M A and Walsh J L 2015 Plasma Sources Sci. Technol. 24 034001
[31] Hofmann S, van Gessel A F H, Verreycken T and Bruggeman P 2011 Plasma Sources Sci. Technol. 20 065010
[32] Gigosos M A, Gonzalez M A and Cardenoso V 2003 Spectrochim. Acta B 58 1489
[33] Huang J, Yang L, Zhang H, Chen L and Wu X 2019 Chin. Phys. B 28 055202
[34] Verreycken T 2013 Spectroscopic investigation of OH dynamics in transient atmospheric pressure plasmas, PhD Dissertation (Eindhoven:Eindhoven University of Technology)
[35] Liu D X, Bruggeman P, Iza F, Rong M Z and Kong M G 2010 Plasma Sources Sci. Technol. 19 025018
[36] Binns W R and Ahl J L 1978 J. Chem. Phys. 68 538
[37] Verreycken T, Sadeghi N and Bruggeman P J 2014 Plasma Sources Sci. Technol. 23 045005
[1] Fine and hyperfine structures of pionic helium atoms
Zhi-Da Bai(白志达), Zhen-Xiang Zhong(钟振祥), Zong-Chao Yan(严宗朝), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2023, 32(2): 023601.
[2] Helium bubble formation and evolution in NiMo-Y2O3 alloy under He ion irradiation
Awen Liu(刘阿文), Hefei Huang(黄鹤飞), Jizhao Liu(刘继召), Zhenbo Zhu(朱振博), and Yan Li(李燕). Chin. Phys. B, 2022, 31(4): 046102.
[3] Development of a cryogen-free dilution refrigerator
Zhongqing Ji(姬忠庆), Jie Fan(樊洁), Jing Dong(董靖), Yongbo Bian(边勇波), and Zhi-Gang Cheng(程智刚). Chin. Phys. B, 2022, 31(12): 120703.
[4] Evolution of helium bubbles in nickel-based alloy by post-implantation annealing
Rui Zhu(朱睿), Qin Zhou(周钦), Li Shi(史力), Li-Bin Sun(孙立斌), Xin-Xin Wu(吴莘馨), Sha-Sha Lv(吕沙沙), and Zheng-Cao Li(李正操). Chin. Phys. B, 2021, 30(8): 086102.
[5] Helium-hydrogen synergistic effects on swelling in in-situ multiple-ion beams irradiated steels
Haocheng Liu(刘昊成), Jia Huang(黄嘉), Liuxuan Cao(曹留煊), Yue Su(苏悦), Zhiying Gao(高智颖), Pengfei Ma(马鹏飞), Songqin Xia(夏松钦), Wei Ge(葛伟), Qingyuan Liu(刘清元), Shuang Zhao(赵双), Yugang Wang(王宇钢), Jinchi Huang(黄金池), Zhehui Zhou(周哲辉), Pengfei Zheng(郑鹏飞), and Chenxu Wang(王晨旭). Chin. Phys. B, 2021, 30(8): 086106.
[6] Influence of helium on the evolution of irradiation-induced defects in tungsten: An object kinetic Monte Carlo simulation
Peng-Wei Hou(侯鹏伟), Yu-Hao Li(李宇浩), Zhong-Zhu Li(李中柱), Li-Fang Wang(王丽芳), Xingyu Gao(高兴誉), Hong-Bo Zhou(周洪波), Haifeng Song(宋海峰), and Guang-Hong Lu(吕广宏). Chin. Phys. B, 2021, 30(8): 086108.
[7] In-situ TEM observation of the evolution of helium bubbles in Mo during He+ irradiation and post-irradiation annealing
Yi-Peng Li(李奕鹏), Guang Ran(冉广), Xin-Yi Liu(刘歆翌), Xi Qiu(邱玺), Qing Han(韩晴), Wen-Jie Li(李文杰), and Yi-Jia Guo(郭熠佳). Chin. Phys. B, 2021, 30(8): 086109.
[8] HeTDSE: A GPU based program to solve the full-dimensional time-dependent Schrödinger equation for two-electron helium subjected to strong laser fields
Xi Zhao(赵曦), Gangtai Zhang(张刚台), Tingting Bai(白婷婷), Jun Wang(王俊), and Wei-Wei Yu(于伟威). Chin. Phys. B, 2021, 30(7): 073201.
[9] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[10] Decomposition reaction of phosphate rock under the action of microwave plasma
Hui Zheng(郑慧), Meng Yang(杨猛), Cheng-Fa Jiang(江成发), and Dai-Jun Liu(刘代俊). Chin. Phys. B, 2021, 30(4): 045201.
[11] Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures
Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超). Chin. Phys. B, 2020, 29(9): 093101.
[12] Laser-assisted XUV double ionization of helium atoms: Intensity dependence of joint angular distributions
Fengzheng Zhu(朱风筝), Genliang Li(黎根亮), Aihua Liu(刘爱华). Chin. Phys. B, 2020, 29(7): 073202.
[13] Simulation of helium supersonic molecular beam injection in tokamak plasma
Xue-Ke Wu(吴雪科), Zhan-Hui Wang(王占辉), Hui-Dong Li(李会东), Li-Ming Shi(石黎铭), Di Wan(万迪), Qun-Chao Fan(樊群超), Min Xu(许敏). Chin. Phys. B, 2020, 29(6): 065201.
[14] Thermal desorption characteristic of helium ion irradiated nickel-base alloy
Shasha Lv(吕沙沙), Rui Zhu(朱睿), Yumeng Zhao(赵雨梦), Mingyang Li(李明阳), Guojing Wang(王国景), Menglin Qiu(仇猛淋), Bin Liao(廖斌), Qingsong Hua(华青松), Jianping Cheng(程建平), Zhengcao Li(李正操). Chin. Phys. B, 2020, 29(4): 040704.
[15] Effects of helium irradiation dose and temperature on the damage evolution of Ti3SiC2 ceramic
Hua-Hai Shen(申华海), Xia Xiang(向霞), Hai-Bin Zhang(张海斌), Xiao-Song Zhou(周晓松), Hong-Xiang Deng(邓洪祥), Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2019, 28(7): 076104.
No Suggested Reading articles found!