CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Impact of back-gate bias on the hysteresis effect in partially depleted SOI MOSFETs |
Luo Jie-Xin(罗杰馨)a)b), Chen Jing(陈静)a)†, Zhou Jian-Hua(周建华)a)b), Wu Qing-Qing(伍青青)a)b), Chai Zhan(柴展)a), Yu Tao(余涛)a)c), and Wang Xi(王曦)a) |
a. State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Shanghai 200050, China;
b. Graduate University of Chinese Academy of Sciences, Beijing 100049, China;
c. The Key Laboratory of Thin Films of Jiangsu, Departments of Physics, Soochow University, Suzhou 215006, China |
|
|
Abstract The hysteresis effect in the output characteristics, originating from the floating body effect, has been measured in partially depleted (PD) silicon-on-insulator (SOI) MOSFETs at different back-gate biases. ID hysteresis has been developed to clarify the hysteresis characteristics. The fabricated devices show the positive and negative peaks in the ID hysteresis. The experimental results show that the ID hysteresis is sensitive to the back gate bias in 0.13-μm PD SOI MOSFETs and does not vary monotonously with the back-gate bias. Based on the steady-state Shockley--Read--Hall (SRH) recombination theory, we have successfully interpreted the impact of the back-gate bias on the hysteresis effect in PD SOI MOSFETs.
|
Revised: 27 April 2012
Accepted manuscript online:
|
PACS:
|
66.70.Df
|
(Metals, alloys, and semiconductors)
|
|
68.35.bg
|
(Semiconductors)
|
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
Fund: Project supported by the TCAD Simulation and SPICE Modeling of 0.13μm SOI Technology, China (Grant No. 2009ZX02306-002). |
Cite this article:
Luo Jie-Xin(罗杰馨), Chen Jing(陈静), Zhou Jian-Hua(周建华), Wu Qing-Qing(伍青青), Chai Zhan(柴展), Yu Tao(余涛), and Wang Xi(王曦) Impact of back-gate bias on the hysteresis effect in partially depleted SOI MOSFETs 2012 Chin. Phys. B 21 056602
|
[1] |
Shahidi G G 2002 IBM J. Res. Dev. 46 121
|
[2] |
Colinge J P 2004 Silicon-On-Insulator:Materials to VLSI (Boston:Kluwer Academic Publishers)
|
[3] |
Marshall A and Natarajan S 2003 SOI Design:Analog, Memory and Digital Techniques (New York:Kluwer Academic Publishers)
|
[4] |
Mercha A, Rafi J M, Simoen E, Augendre E and Claeys C 2003 IEEE Trans. Electron Dev. 50 1675
|
[5] |
Pretet J, Matsumoto T, Poiroux T, Cristoloveanu S, Gwoziecki R, Raynaud C E, Roveda A and Brut H 2002 ESSDERC (Firenze:IEEE Electron Devices Society)
|
[6] |
Shahidi G G, Ajmera A, Assaderaghi F, Bolam R J, Leobandung E, Rausch W, Sankus D, Schepis D, Wagner L F, Kun W and Davari B 1999 ISSCC Dig. Tech. Papers (San Francisco:IEEE Solid-State Circuits Society)
|
[7] |
Assaderaghi F, Shahidi G G, Hargrove M, Hathorn K, Hovel H, Kulkarni S, Rausch W, Sadana D, Schepis D, Schulz R, Yee D, Sun J, Dennard R and Davari B 1996 Proc. Symp. VLSI Technol. (Honolulu:IEEE Computer Society)
|
[8] |
Kilchytska V, Neve A, Vancaillie L, Levacq D, Adriaensen S, van Meer H, De Meyer K, Raynaud C, Dehan M, Raskin J P and Flandre D 2003 IEEE Trans. Electron Dev. 50 577
|
[9] |
Chen S S, Lu S H and Tang T H 2004 IEEE Trans. Electron Dev. 51 708
|
[10] |
Eimori T, Oashi T, Morishita F, Iwamatsu T, Yamaguchi Y, Okuda F, Shimomura K, Shimano H, Sakashita N, Arimoto K, Inoue Y, Komori S, Inuishi M, Nishimura T and Miyoshi H 1998 IEEE Trans. Electron Dev. 45 1000
|
[11] |
Trivedi V P and Fossum J G 2005 IEEE Electron Dev. Lett. 26 26
|
[12] |
Vaidy S, Bertrand P, Jonathan B, Abdelkarim M, Dimitri L, Piet W, Josine L, Morin D, Cedric G, Nadine C, Stefan K, Robert L, Jacob H, Florence C, Stephane D, Malgorzata J, Guido G, Willy S and Stefaan D 2006 IEEE Trans. Electron Dev. 53 3071
|
[13] |
Wu L J, Hu S D, Luo X R, Zhang B and Li Z J 2011 Chin. Phys. B 20 107101
|
[14] |
Qiao M, Zhang B, Li Z J, Fang J and Zhou X D 2007 Acta Phys. Sin. 56 3990 (in Chinese)
|
[15] |
Luo J X, Chen J, Zhou J H, Wu Q Q, Chai Z and Wang X 2012 Device and Materials Reliability, IEEE Transactions on 12 63
|
[16] |
Zhou J, Pang A and Zou S 2011 J. Phys. D 44 075103
|
[17] |
Wu H Y, Zhang H M, Song J J and Hu H Y 2011 Acta Phys. Sin. 60 596 (in Chinese)
|
[18] |
Wu T F, Zhang H M, Wang G Y and Hu H Y 2011 Acta Phys. Sin. 60 637 (in Chinese)
|
[19] |
Dai C H, Chang T C, Chu A K, Kuo Y J, Chen S C, Tsai C C, Ho S H, Lo W H, Xia G R, Cheng O and Huang C T 2010 IEEE Electron Dev. Lett. 31 540
|
[20] |
Schuegraf K F and Hu C 1994 IEEE Trans. Electron Dev. 41 761
|
[21] |
Hayama K, Takakura K, Okada S, Kudou T, Ohyama H, Rafi J, Martino J, Mercha A, Simoen E and Claeys C 2006 Physica B 376 416
|
[22] |
Sah C T, Noyce R N and Shockley W 1957 Proc. IRE 45 1228
|
[23] |
Cai J and Sah C T 2000 IEEE Trans. Electron Dev. 47 576
|
[24] |
Sah C T 1962 IRE Trans. Electron Dev. 9 94
|
[25] |
Shockley W and Read W T 1952 Phys. Rev. 87 835
|
[26] |
Cai J and Sah C T 1999 IEEE Electron Dev. Lett. 20 60
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|