|
|
Stereodynamics of the reactions Ne+H2+ /Ne+D2+/Ne+T2 |
Xiao Jing(肖静), Yang Chuan-Lu(杨传路)†, and Wang Mei-Shan(王美山) |
School of Physics, Ludong University, Yantai 264025, China |
|
|
Abstract The vector correlations between products and reagents for the reactions Ne+H$_{2}^{ + }$, Ne+D$_{2}^{ + }$, and Ne+T$_{2}^{ + }$ are calculated by means of the quasi-classical trajectory method on a new potential energy surface constructed by Lü et al. [J. Chem. Phys. 2010 132, 014303]. The polarization-dependent differential cross-sections ($2\pi /\sigma )({\rm d}\sigma _{00}/{\rm d}\omega _{t})$, ($2\pi /\sigma )({\rm d}\sigma _{20}/{\rm d}\omega _{t})$, ($2\pi /\sigma )({\rm d}\sigma_{22+} /{\rm d}\omega _{t})$, and ($2\pi /\sigma )({\rm d}\sigma _{21 - }/{\rm d}\omega _{t})$, and the distributions of $P(\theta _r)$, $P(\phi _r )$, and $P(\theta _r$, $\phi _r)$ are calculated. The isotopic effect, which is associated with the difference in mass factor among the three reactions, is revealed.
|
Received: 01 November 2010
Revised: 11 October 2011
Accepted manuscript online:
|
PACS:
|
31.15.ap
|
(Polarizabilities and other atomic and molecular properties)
|
|
34.50.Lf
|
(Chemical reactions)
|
|
31.15.xv
|
(Molecular dynamics and other numerical methods)
|
|
Fund: Project supported by the National Natural Science Foundation of China(Grant Nos.NSFC-11174117 and NSFC-10974078) |
Corresponding Authors:
Yang Chuan-Lu, E-mail:yangchuanlu@263.net
E-mail: yangchuanlu@263.net
|
Cite this article:
Xiao Jing(肖静), Yang Chuan-Lu(杨传路), and Wang Mei-Shan(王美山) Stereodynamics of the reactions Ne+H2+ /Ne+D2+/Ne+T2 2012 Chin. Phys. B 21 043101
|
[1] |
Klein F S and Friedman L 1964 J. Chem. Phys. 41 1789
|
[2] |
Bilotta R M and Farrar J M 1981 J. Chem. Phys. 75 1776
|
[3] |
van Pijkeren D, Boltjes E, van Eck J and Niehaus A 1984 Chem. Phys. 91 293
|
[4] |
Herman Z and Koyano I 1987 J. Chem. Soc. Faraday Trans. 2 127
|
[5] |
Zhang T, Qian X M, Tang X N, Ng C Y, Chiu Y, Levandier D J, Miller J S and Dressler R A 2003 J. Chem. Phys. 119 10175
|
[6] |
Kress J D, Walker R B, Hayes E F and Pendergast P 1994 J. Chem. Phys. 100 2728
|
[7] |
Gilibert M, Blasco R M, Gonz醠ez M, Gim閚ez X, Aguilar A, Last I and Baer M 1997 J. Phys. Chem. A 101 6821
|
[8] |
Gilibert M, Gim閚ez X, Huarte-Larra naga F, Gonz醠ez M, Aguilar A, Last I and Baer M 1999 J. Chem. Phys. 110 6278
|
[9] |
Huarte-Larra naga F, Gim閚ez X, Lucas J M, Aguilar A and Launay J M 1999 Phys. Chem. Chem. Phys. 1 1125
|
[10] |
Huarte-Larra naga F, Gim閚ez X, Lucas J M, Aguilar A and Launay J M 2000 J. Phys. Chem. A 104 10227
|
[11] |
Mayneris J, Sierra J D and Gonz醠ez M 2008 J. Chem. Phys. 128 194307
|
[12] |
Mayneris-Perxachs J and Gonz醠ez M 2009 J. Phys. Chem. A 113 4105
|
[13] |
Pendergast P, Heck J M, Hayes E F and Jacque R 1993 J. Chem. Phys. 98 4543
|
[14] |
Lü S J, Zhang P Y, Han K L and He G Z 2010 J. Chem. Phys. 132 014303
|
[15] |
Xiao J, Yang C L, Li X H, Wang M S and Ma X G 2011 Chin. Phys. Lett. 28 013101
|
[16] |
Aoiz F J, Brouard M and Enriquez P A 1996 J. Chem. Phys. 105 4964
|
[17] |
Chen M D, Han K L and Lou N Q 2002 Chem. Phys. 283 463
|
[18] |
Chen M D, Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463
|
[19] |
Zhang W Q, Li Y Z, Xu X S and Chen M D 2010 Chem. Phys. 367 115
|
[20] |
Duan L H, Zhang W Q, Xu X S, Cong S L and Chen M D 2009 Mole. Phys. 107 2579
|
[21] |
Xu X S, Zhang W Q, Jin K and Yin S H 2010 Chin. Phys. B 19 117808
|
[22] |
Kong H, Liu Xin G, Xu W W, Liang J J and Zhang Q G 2009 Acta Phys. Sin. 58 6926 (in Chinese)
|
[23] |
Liu X G, Sun H Z, Liu H R and Zhang Q G 2010 Acta Phys. Sin. 59 7796 (in Chinese)
|
[24] |
Truhlar D G and Muckerman J T 1979 in: Bernstein R B (ed.), Atom-Molecule Collision: A Guide for the Experimentalists (New York: Academic) p. 505
|
[25] |
Shafer-Ray N E, Orr-Ewing A J and Zare R N 1995 J. Phys. Chem. 99 7591
|
[26] |
Aoiz F J, Banares L and Herrero V J 1998 J. Chem. Soc. Faraday Trans. 94 2483
|
[27] |
Mcclelland G M and Herschbach D R 1979 J. Phys. Chem. A 83 1445
|
[28] |
Aguado A and Paniagua M 1992 J. Chem. Phys. 96 1265
|
[29] |
Zhao J, Xu Y and Meng Q T 2009 J. Phys. B 42 165006
|
[30] |
Wang M L, Han K L and He G Z 1998 J. Phys. Chem. A 102 20204
|
[31] |
Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446
|
[32] |
Li R J, Han K L, Li F E, Lu R C, He G Z and Lou N Q 1994 Chem. Phys. Lett. 220 281
|
[33] |
Han K L, Zhang L, Xu D L, He G Z and Lou N Q 2001 J. Phys. Chem. A 105 2956
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|