Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 043101    DOI: 10.1088/1674-1056/21/4/043101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Stereodynamics of the reactions Ne+H2+ /Ne+D2+/Ne+T2

Xiao Jing(肖静), Yang Chuan-Lu(杨传路), and Wang Mei-Shan(王美山)
School of Physics, Ludong University, Yantai 264025, China
Abstract  The vector correlations between products and reagents for the reactions Ne+H$_{2}^{ + }$, Ne+D$_{2}^{ + }$, and Ne+T$_{2}^{ + }$ are calculated by means of the quasi-classical trajectory method on a new potential energy surface constructed by Lü et al. [J. Chem. Phys. 2010 132, 014303]. The polarization-dependent differential cross-sections ($2\pi /\sigma )({\rm d}\sigma _{00}/{\rm d}\omega _{t})$, ($2\pi /\sigma )({\rm d}\sigma  _{20}/{\rm d}\omega _{t})$, ($2\pi /\sigma )({\rm d}\sigma_{22+} /{\rm d}\omega _{t})$, and ($2\pi /\sigma )({\rm d}\sigma _{21 - }/{\rm d}\omega _{t})$, and the distributions of $P(\theta _r)$, $P(\phi _r )$, and $P(\theta _r$, $\phi _r)$ are  calculated. The isotopic effect, which is associated with the difference in mass factor among the three reactions, is revealed.
Keywords:  stereodynamics      quasi-classical trajectory      isotoπc effect      vector correlation  
Received:  01 November 2010      Revised:  11 October 2011      Accepted manuscript online: 
PACS:  31.15.ap (Polarizabilities and other atomic and molecular properties)  
  34.50.Lf (Chemical reactions)  
  31.15.xv (Molecular dynamics and other numerical methods)  
Fund: Project supported by the National Natural Science Foundation of China(Grant Nos.NSFC-11174117 and NSFC-10974078)
Corresponding Authors:  Yang Chuan-Lu, E-mail:yangchuanlu@263.net     E-mail:  yangchuanlu@263.net

Cite this article: 

Xiao Jing(肖静), Yang Chuan-Lu(杨传路), and Wang Mei-Shan(王美山) Stereodynamics of the reactions Ne+H2+ /Ne+D2+/Ne+T2 2012 Chin. Phys. B 21 043101

[1] Klein F S and Friedman L 1964 J. Chem. Phys. 41 1789
[2] Bilotta R M and Farrar J M 1981 J. Chem. Phys. 75 1776
[3] van Pijkeren D, Boltjes E, van Eck J and Niehaus A 1984 Chem. Phys. 91 293
[4] Herman Z and Koyano I 1987 J. Chem. Soc. Faraday Trans. 2 127
[5] Zhang T, Qian X M, Tang X N, Ng C Y, Chiu Y, Levandier D J, Miller J S and Dressler R A 2003 J. Chem. Phys. 119 10175
[6] Kress J D, Walker R B, Hayes E F and Pendergast P 1994 J. Chem. Phys. 100 2728
[7] Gilibert M, Blasco R M, Gonz醠ez M, Gim閚ez X, Aguilar A, Last I and Baer M 1997 J. Phys. Chem. A 101 6821
[8] Gilibert M, Gim閚ez X, Huarte-Larra naga F, Gonz醠ez M, Aguilar A, Last I and Baer M 1999 J. Chem. Phys. 110 6278
[9] Huarte-Larra naga F, Gim閚ez X, Lucas J M, Aguilar A and Launay J M 1999 Phys. Chem. Chem. Phys. 1 1125
[10] Huarte-Larra naga F, Gim閚ez X, Lucas J M, Aguilar A and Launay J M 2000 J. Phys. Chem. A 104 10227
[11] Mayneris J, Sierra J D and Gonz醠ez M 2008 J. Chem. Phys. 128 194307
[12] Mayneris-Perxachs J and Gonz醠ez M 2009 J. Phys. Chem. A 113 4105
[13] Pendergast P, Heck J M, Hayes E F and Jacque R 1993 J. Chem. Phys. 98 4543
[14] Lü S J, Zhang P Y, Han K L and He G Z 2010 J. Chem. Phys. 132 014303
[15] Xiao J, Yang C L, Li X H, Wang M S and Ma X G 2011 Chin. Phys. Lett. 28 013101
[16] Aoiz F J, Brouard M and Enriquez P A 1996 J. Chem. Phys. 105 4964
[17] Chen M D, Han K L and Lou N Q 2002 Chem. Phys. 283 463
[18] Chen M D, Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463
[19] Zhang W Q, Li Y Z, Xu X S and Chen M D 2010 Chem. Phys. 367 115
[20] Duan L H, Zhang W Q, Xu X S, Cong S L and Chen M D 2009 Mole. Phys. 107 2579
[21] Xu X S, Zhang W Q, Jin K and Yin S H 2010 Chin. Phys. B 19 117808
[22] Kong H, Liu Xin G, Xu W W, Liang J J and Zhang Q G 2009 Acta Phys. Sin. 58 6926 (in Chinese)
[23] Liu X G, Sun H Z, Liu H R and Zhang Q G 2010 Acta Phys. Sin. 59 7796 (in Chinese)
[24] Truhlar D G and Muckerman J T 1979 in: Bernstein R B (ed.), Atom-Molecule Collision: A Guide for the Experimentalists (New York: Academic) p. 505
[25] Shafer-Ray N E, Orr-Ewing A J and Zare R N 1995 J. Phys. Chem. 99 7591
[26] Aoiz F J, Banares L and Herrero V J 1998 J. Chem. Soc. Faraday Trans. 94 2483
[27] Mcclelland G M and Herschbach D R 1979 J. Phys. Chem. A 83 1445
[28] Aguado A and Paniagua M 1992 J. Chem. Phys. 96 1265
[29] Zhao J, Xu Y and Meng Q T 2009 J. Phys. B 42 165006
[30] Wang M L, Han K L and He G Z 1998 J. Phys. Chem. A 102 20204
[31] Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446
[32] Li R J, Han K L, Li F E, Lu R C, He G Z and Lou N Q 1994 Chem. Phys. Lett. 220 281
[33] Han K L, Zhang L, Xu D L, He G Z and Lou N Q 2001 J. Phys. Chem. A 105 2956
[1] Effect of isotope on state-to-state dynamics for reactive collision reactions O(3P)+H2+→OH++H and O(3P)+H2+→OH+H+ in ground state 12A" and first excited 12A' potential energy surfaces
Juan Zhao(赵娟), Ting Xu(许婷), Lu-Lu Zhang(张路路), Li-Fei Wang(王立飞). Chin. Phys. B, 2020, 29(2): 023105.
[2] Quasi-classical trajectory study of H+LiH (v=0, 1, 2, j=0)→Li+H2 reaction on a new global potential energy surface
Yu-Liang Wang(王玉良), De-Zhi Su(宿德志), Cun-Hai Liu(刘存海), Hui Li(李慧). Chin. Phys. B, 2019, 28(8): 083402.
[3] Dynamics of the Au+H2 reaction by time-dependent wave packet and quasi-classical trajectory methods
Yong Zhang(张勇), Chengguo Jiang(姜成果). Chin. Phys. B, 2019, 28(12): 123101.
[4] Dynamics of the CH4+O(3P)→CH3(ν=0)+OH(ν'=0) reaction
Zhong-An Jiang(蒋仲安), Ya Peng(彭亚), Ju-Shi Chen(陈举师), Gui Lan(兰桂), Hao-Yu Lin(林浩宇). Chin. Phys. B, 2018, 27(6): 063401.
[5] Intrinsic product polarization and branch ratio in theS(1D, 3P)+HD reaction on three electronic states
Lin Li(李琳), Shunle Dong(董顺乐). Chin. Phys. B, 2016, 25(9): 093401.
[6] Effects of collision energy and rotational quantum number on stereodynamics of the reactions: H(2S)+NH(v=0, j=0, 2, 5, 10)→N(4S)+H2
Wei Wang(王伟), Yong-Jiang Yu(于永江), Gang Zhao(赵刚), Chuan-Lu Yang(杨传路). Chin. Phys. B, 2016, 25(8): 083402.
[7] Energy and rotation-dependent stereodynamics of H(2S) + NH(a1Δ)→H2(X1Σg+) + N(2D) reaction
Yong-Qing Li(李永庆), Yun-Fan Yang(杨云帆), Yang Yu(于洋), Yong-jia Zhang(张永嘉), Feng-Cai Ma(马凤才). Chin. Phys. B, 2016, 25(2): 023401.
[8] Stereodynamics of the reactions: F+H2/HD/HT→FH+H/D/T
Chi Xiao-Lin (迟晓琳), Zhao Jin-Feng (赵金峰), Zhang Yong-Jia (张永嘉), Ma Feng-Cai (马凤才), Li Yong-Qing (李永庆). Chin. Phys. B, 2015, 24(5): 053401.
[9] Quasi-classical trajectory study of collision energy effect on the stereodynamics of H + BrO→O + HBr reaction
Xie Ting-Xian (解廷献), Zhang Ying-Ying (张莹莹), Shi Ying (石英), Li Ze-Rui (李泽瑞), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(4): 043402.
[10] Theoretical prediction of energy dependence for D+BrO→DBr+O reaction: The rate constant and product rotational polarization
Zhang Ying-Ying (张莹莹), Xie Ting-Xian (解廷献), Li Ze-Rui (李泽瑞), Shi Ying (石英), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(3): 038201.
[11] Vector correlations study of the reaction N(2D)+ H2(X1Σg+)→NH(a1Δ)+ H(2S) with different collision energies and reagent vibration excitations
Li Yong-Qing (李永庆), Zhang Yong-Jia (张永嘉), Zhao Jin-Feng (赵金峰), Zhao Mei-Yu (赵美玉), Ding Yong (丁勇). Chin. Phys. B, 2015, 24(11): 113402.
[12] Effects of the vibrational and rotational excitation of reagent on the stereodynamics of the reaction S(3P) + H2→SH + H
Shan Guang-Ling (单广玲), Wang Mei-Shan (王美山), Yang Chuan-Lu (杨传路), Li Yan-Qing (李艳青). Chin. Phys. B, 2014, 23(6): 068201.
[13] Quasi-classical trajectory study of the isotope effect on the stereodynamics in the reaction H(2S)+CH(X2Π; v=0, j=1)→C(1D)+H2(X1Σg+)
Wang Yun-Hui (王允辉), Xiao Chuan-Yun (肖传云), Deng Kai-Ming (邓开明), Lu Rui-Feng (陆瑞锋). Chin. Phys. B, 2014, 23(4): 043401.
[14] Stereodynamics study of the H’(2S)+NH(X3-→N(4S) +H2 reaction
Wei Qiang (魏强). Chin. Phys. B, 2014, 23(2): 023401.
[15] Quasi-classical trajectory investigation on the stereodynamics of Li+DF (v=1-6, j=0)→LiF+D reaction
Zhang Ying-Ying (张莹莹), Li Shu-Juan (李淑娟), Shi Ying (石英), Xie Ting-Xian (解廷献), Jin Ming-Xing (金明星). Chin. Phys. B, 2014, 23(12): 123402.
No Suggested Reading articles found!