Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 040305    DOI: 10.1088/1674-1056/21/4/040305
GENERAL Prev   Next  

Quantum state swap for two trapped Rydberg atoms

Wu Huai-Zhi(吴怀志)a)†, Yang Zhen-Biao(杨贞标)b), and Zheng Shi-Biao(郑仕标) a)
a. Laboratory of Quantum Optics, Department of Physics, Fuzhou University, Fuzhou 350002, China;
b. Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, China
Abstract  The quantum swap gate is one of the most useful gates for quantum computation. Two-qubit entanglement and a controlled-NOT quantum gate in a neutral Rydberg atom system have been achieved in recent experiments. It is therefore very interesting to propose a scheme here for swapping a quantum state between two trapped neutral atoms via the Rydberg blockade mechanism. The atoms interact with a sequence of laser pulses without individual addressing. The errors of the swap gate due to imprecision of pulse length, finite Rydberg interaction, and atomic spontaneous emission are discussed.
Keywords:  neutral atom      swap gate      Rydberg blockade  
Received:  06 May 2011      Revised:  05 December 2011      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  32.80.Ee (Rydberg states)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Natural Science Foundation of China(Grant No.10974028),the Doctoral Foundation of theMinistry of Education of China(Grant No.20093514110009),the Natural Science Foundation of Fujian Province of China(GrantNo.2009J06002),the Fund from Fuzhou University(Grant No.022408),the National Basic Research Program of China(GrantNos.2011CB921200 and 2011CBA00200),and the China Postdoctoral Science Foundation(Grant No.20110490828)
Corresponding Authors:  Wu Huai-Zhi, E-mail:huaizhi.wu@fzu.edu.cn     E-mail:  huaizhi.wu@fzu.edu.cn

Cite this article: 

Wu Huai-Zhi(吴怀志), Yang Zhen-Biao(杨贞标), and Zheng Shi-Biao(郑仕标) Quantum state swap for two trapped Rydberg atoms 2012 Chin. Phys. B 21 040305

[1] Saffman M, Walker T G and Mo lmer K 2010 Rev. Mod. Phys. 82 2313
[2] Zhao B, Müller M, Hammerer K and Zoller P 2010 Phys. Rev. A 81 052329
[3] Li D, Chen A X and Zhang J S 2011 Chin. Phys. B 20 110304
[4] Han Y, He B, Heshami K, Li C Z and Simon C 2010 Phys. Rev. A 81 052311
[5] Gorshkov A V, Otterbach J, Fleischhauer M, Pohl T and Lukin M D 2011 Phys. Rev. Lett. 107 133602
[6] Mo lmer K, Isenhower L and Saffman M 2011 J. Phys. B: At. Mol. Opt. Phys. 44 184016
[7] Chen A X 2011 Opt. Express 19 2037
[8] Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D D, Walker T G and Saffman M 2009 Nat. Phys. 5 110
[9] Gaëtan A, Miroshnychenko Y, Wilk T, Chotia A, Viteau M, Comparat D, Pillet P, Browaeys A and Grangier P 2009 Nat. Phys. 5 115
[10] Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G and Saffman M 2010 Phys. Rev. Lett. 104 010503
[11] Wilk T, Gaëtan A, Evellin C, Wolters J, Miroshnychenko Y, Grangier P and Browaeys A 2010 Phys. Rev. Lett. 104 010502
[12] Jaksch D, Cirac J I, Zoller P, Rolston S L, C^ot ? R and Lukin M D 2000 Phys. Rev. Lett. 85 2208
[13] Lukin M D, Fleischhauer M, Cote R, Duan L M, Jaksch D, Cirac J I and Zoller P 2001 Phys. Rev. Lett. 87 037901
[14] Saffman M and Walker T G 2002 Phys. Rev. A 66 065403
[15] Saffman M and Walker T G 2005 Phys. Rev. A 72 042302
[16] Müller M, Lesanovsky I, Weimer H, Büchler H P and Zoller P 2009 Phys. Rev. Lett. 102 170502
[17] Saffman M and Mo lmer K 2009 Phys. Rev. Lett. 102 240502
[18] Wu H Z, Yang Z B and Zheng S B 2010 Phys. Rev. A 82 034307
[19] Wu H Z, Yang Z B and Zheng S B 2010 Commun. Theor. Phys. 54 835
[20] Ni B B, Gu Y J, Chen X D, Liang H H, Lin X and Lin X M 2010 Chin. Phys. B 19 090316
[21] Weimer H, Müller M, Lesanovsky I, Zoller P and B üchler H P 2010 Nat. Phys. 6 382
[22] Reslen J 2011 J. Phys. B: At. Mol. Opt. Phys. 44 195505
[23] Bennett C H and DiVincenzo D P 2000 Nature (London) 404 247
[24] Vatan F and Williams C 2004 Phys. Rev. A 69 032315
[25] Förster T 1948 Ann. Phys. 437 55
[26] Saffman M and Walker T G 2008 Phys. Rev. A 77 032723
[27] Saffman M and Mo lmer K 2008 Phys. Rev. A 78 012336
[28] Saffman M and Walker T G 2005 Phys. Rev. A 72 022347
[1] Universal quantum control based on parametric modulation in superconducting circuits
Dan-Yu Li(李丹宇), Ji Chu(储继), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Shao-Xiong Li(李邵雄), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(7): 070308.
[2] Deterministic implementations of fermionic quantum SWAP and Fredkin gates for spin qubits based on charge detection
Wang Hong-Fu(王洪福), Zhang Shou(张寿), and Zhu Ai-Dong(朱爱东) . Chin. Phys. B, 2012, 21(4): 040306.
[3] Feasible schemes for quantum swap gates of optical qubits via cavity QED
Tang Shi-Qing(唐世清), Zhang Deng-Yu(张登玉), Wang Xin-Wen(汪新文), Xie Li-Jun(谢利军), and Gao Feng(高峰) . Chin. Phys. B, 2011, 20(4): 040308.
[4] Transfer of entangled state, entanglement swapping and quantum information processing via the Rydberg blockade
Deng Li(邓黎), Chen Ai-Xi(陈爱喜), and Zhang Jian-Song(张建松) . Chin. Phys. B, 2011, 20(11): 110304.
[5] Two quantum oscillators coupled with a planar radio frequency ion trap
Chen Liang(陈亮) and Gao Ke-Lin(高克林). Chin. Phys. B, 2010, 19(11): 110309.
[6] One scheme for remote quantum logical gates with the assistance of a classical field
Li Yan-Ling(李艳玲),Fang Mao-Fa(方卯发), and Zeng Ke(曾可) . Chin. Phys. B, 2010, 19(1): 010307.
[7] Quantum logic gates with two-level trapped ions beyond Lamb--Dicke limit
Zheng Xiao-Juan(郑小娟), Luo Yi-Min(罗益民), and Cai Jian-Wu(蔡建武). Chin. Phys. B, 2009, 18(4): 1352-1356.
[8] Efficient scheme of quantum SWAP gate and multi-atom cluster state via cavity QED
Jiang Chun-Lei(姜春蕾), Fang Mao-Fa(方卯发), and Hu Yao-Hua(胡要花). Chin. Phys. B, 2008, 17(1): 190-193.
No Suggested Reading articles found!