Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 027304    DOI: 10.1088/1674-1056/21/2/027304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Quantum confinement effects and source-to-drain tunneling in ultra-scaled double-gate silicon n-MOSFETs

Jiang Xiang-Wei(姜向伟) and Li Shu-Shen(李树深)
State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P. O. Box 912, Beijing 100083, China
Abstract  By using the linear combination of bulk band (LCBB) method incorporated with the top of the barrier splitting (TBS) model, we present a comprehensive study on the quantum confinement effects and the source-to-drain tunneling in the ultra-scaled double-gate (DG) metal-oxide-semiconductor field-effect transistors (MOSFETs). A critical body thickness value of 5 nm is found, below which severe valley splittings among different X valleys for the occupied charge density and the current contributions occur in ultra-thin silicon body structures. It is also found that the tunneling current could be nearly 100% with an ultra-scaled channel length. Different from the previous simulation results, it is found that the source-to-drain tunneling could be effectively suppressed in the ultra-thin body thickness (2.0 nm and below) by the quantum confinement and the tunneling could be suppressed down to below 5% when the channel length approaches 16 nm regardless of the body thickness.
Keywords:  quantum confinement      tunneling      metal-oxide-semiconductor field-effect transistors      linear combination of bulk band  
Received:  08 September 2011      Revised:  10 November 2011      Accepted manuscript online: 
PACS:  73.23.Ad (Ballistic transport)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
Fund: Project supported by the National Basic Research Program of China (Grant No. G2009CB929300) and the National Natural Science Foundation of China (Grant Nos. 60821061 and 60776061).
Corresponding Authors:  Jiang Xiang-Wei,xwjiang@semi.ac.cn     E-mail:  xwjiang@semi.ac.cn

Cite this article: 

Jiang Xiang-Wei(姜向伟) and Li Shu-Shen(李树深) Quantum confinement effects and source-to-drain tunneling in ultra-scaled double-gate silicon n-MOSFETs 2012 Chin. Phys. B 21 027304

[1] online available: http://www.itrs.net
[2] Wong H S 2002 IBM J. RES. & DEV. bf46 2/3
[3] Haensch W, Nowak E J, Dennard R H, Solomon P M, Bryant A, Dokumaci O H, Kumar A, Wang X, Johnson J B and Fischetti M V 2006 IBM J. RES. & DEV. bf50 4/5
[4] Frank D J, Laux S E and Fischetti M V 1992 IEDM Tech. Dig. pp. 553-556
[5] Wong H S, Frank D J, Taur Y and Stork M C 1994 IEDM Tech. Dig. pp. 747-750
[6] Hisamoto D, Lee W C, Kedzierski J, Takeuchi H, Asano K, Kuo C, Anderson E, King T J, Bokor J and Hu C 2000 IEEE Trans. Electron Dev. bf47 2320
[7] Shin M 2007 J. Appl. Phys. bf101 024510
[8] Anantram M P and Svizhenko A 2007 IEEE Trans. Electron Dev. bf54 2100
[9] Sverdlov V, Ungersboeck E, Kosina H and Selberherr S 2008 Mat. Sci. Eng. R58 228
[10] Iafrate G J, Grubin H L and Ferry D K 1981 J. Phys. bf42 307
[11] Ferry D K and Zhou J R 1993 Phys. Rev. B bf48 7944
[12] Jin S, Fischetti M V and Tang T W 2008 Appl. Phys. Lett. bf92 082103
[13] Vasileska D, Ferry D K and Goodnick S M 2006 Handbook of Theoretical and Computational Nanotechnology 10, Chap. 1
[14] Lake R, Klimeck G, Bowen R C and Javanovic D 1997 J. Appl. Phys. bf81 7845
[15] Luisier M, Schenk A, Fichtner W and Klimeck G 2006 Phys. Rev. B bf74 205323
[16] Luisier M and Klimeck G 2009 IEEE Electron Dev. Lett. bf30 602
[17] Laux S E, Kumar A and Fischetti M V 2004 J. Appl. Phys. bf95 5545
[18] Jiang X W, Li S S, Xia J B and Wang L W 2011 J. Appl. Phys. bf109 054503
[19] Wang L W and Zunger A 1999 Phys. Rev. B bf59 15806
[20] Wang L W and Zunger A 1994 J. Phys. Chem. bf98 2158
[21] Wang L W, Franceschetti A and Zunger A 1997 Phys. Rev. Lett. bf78 2819
[22] Wood D M and Zunger A 1996 Phys. Rev. B bf53 7949
[23] Wang L W and Zunger A 1996 Phys. Rev. B bf54 11417
[24] Esseni D and Palestri P 2005 Phys. Rev. B bf72 165342
[25] VASP: Vienna ab-initio Simulation Package, http://cms.linebreak mpi.univie.ac.at/vasp/vasp/vasp.html
[26] Shimizu K, Saraya T and Hiramoto T 2010 IEEE Electron Dev. Lett. bf31 4
[27] Deng H X, Jiang X W, Li S S, Xia J B and Wang L W 2008 J. Appl. Phys. 103 124507
[28] Wu T F, Zhang H M, Wang G Y and Hu H Y 2011 Acta Phys. Sin. bf60 027305 (in Chinese)
[29] Wu H Y, Zhang H M, Song J J and Hu H Y 2011 Acta Phys. Sin. bf60 097302 (in Chinese)
[30] Wang J and Lundstrom M 2002 International Electron Device Meeting (IEDM) p. 707 http: // ieeexplore.ieee.org / xpls/abs_all.jsp?arnumber= 1175936&tag=1
[31] Kawaura H, Sakamoto T and Baba T 2000 Appl. Phys. Lett. bf76 3810
[32] Chang L and Hu C 2000 Supperlattices and Microstructures bf28 351
[33] Schenk A and Wettstein A 2002 Technical Proceedings of the 2002 International Conference on Modeling and Simulation of Microsystems p. 552 http://www.linebreak nsti.org/procs/MSM2002/11/X21.03
[34] Asenov A, Brown A R and Watling J R 2002 Technical Proceedings of the 2002 International Conference on Modeling and Simulation of Microsystems p. 490 http://www. nsti.org/procs/MSM2002/10/M41.02
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[3] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[4] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[5] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[6] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[7] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[8] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[9] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[10] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[11] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[12] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[13] Anisotropic refraction and valley-spin-dependent anomalous Klein tunneling in a 1T'-MoS2-based p-n junction
Fenghua Qi(戚凤华) and Xingfei Zhou(周兴飞). Chin. Phys. B, 2022, 31(7): 077301.
[14] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[15] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
No Suggested Reading articles found!