Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 128102    DOI: 10.1088/1674-1056/21/12/128102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Field emissions of graphene films deposited on different substrates by CVD system

Wang Xiao-Ping (王小平), Liu Xiao-Fei (刘晓菲), Liu Xin-Xin (刘欣欣), Wang Li-Jun (王丽军), Yang Can (杨灿), Jing Long-Wei (井龙伟), Li Song-Kun (李松坤), Pan Xiu-Fang (潘秀芳)
College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract  Graphene films are deposited on copper (Cu) and aluminum (Al) substrates, respectively, by using microwave plasma chemical vapour deposition technique. Furthermore, these graphene films are characterized by a field emission type scanning electron microscope (FE-SEM), Raman spectra, and field emission (FE) I-V measurements. It is found that the surface morphologies of the films deposited on Cu and Al substrates are different: the field emission property of graphene film deposited on Cu substrate is better than that on Al substrate, and the lowest turn-on field of 2.4 V/μm is obtained for graphene film deposited on Cu substrate. The macroscopic areas of the graphene samples are all above 400 mm2.
Keywords:  graphene      chemical vapour deposition      field emission  
Received:  13 May 2012      Revised:  18 June 2012      Accepted manuscript online: 
PACS:  81.05.ue (Graphene)  
  52.77.-j (Plasma applications)  
  79.60.Jv (Interfaces; heterostructures; nanostructures)  
  79.70.+q (Field emission, ionization, evaporation, and desorption)  
Fund: Project supported by the Shanghai Human Resources and Social Security Bureau, China (Grant No. 2009023).
Corresponding Authors:  Wang Xiao-Ping     E-mail:  wxpchina64@yahoo.com.cn

Cite this article: 

Wang Xiao-Ping (王小平), Liu Xiao-Fei (刘晓菲), Liu Xin-Xin (刘欣欣), Wang Li-Jun (王丽军), Yang Can (杨灿), Jing Long-Wei (井龙伟), Li Song-Kun (李松坤), Pan Xiu-Fang (潘秀芳) Field emissions of graphene films deposited on different substrates by CVD system 2012 Chin. Phys. B 21 128102

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Bao W, Miao F, Chen Z, Zhang H, Jang W, Dames C and Lau C N 2009 Nature Nanotech. 4 562
[3] Geim A K 2009 Science 324 1530
[4] Si Y and Samulski E T 2008 Nano Lett. 8 1679
[5] Choucair M, Thordarson P and Stride J A 2009 Nature Nanotech. 4 30
[6] Wang D C, Zhang Y M, Zhang Y M, Lei T M, Guo H, Wang Y H, Tang X Y and Wang H 2012 Chin. Phys. B 21 038102
[7] Hao X, ChenY Fu, Li P J, Wang Z G, Liu J B, He J R, Fan R, Sun J R, Zhang W L and Li Y R 2012 Chin. Phys. B 21 046801
[8] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim Kwang S, Ahn J H, Kim P, Choi J Y and Hong B H 2009 Nature 457 706
[9] Kang C G, Kang J W, Lee S K, Lee S Y, Cho C H, Hwang H J, Lee Y G, Heo J, Chung H J, Yang H, Seo S, Park S J, Ko K Y, Ahn J and Lee B H 2011 Nanotechnology 22 295201
[10] Nezich D, Reina A and Kong J 2012 Nanotechnology 23 15701
[11] Calizo I, Balandin A A, Bao W, Miao F and Lau C N 2007 Nano Lett. 7 2645
[12] Wang G X, Yang J, Park J, Gou X L, Wang B, Liu H and Yao J 2008 J. Phys. Chem. C 112 8192
[13] Xu X G, Zhang C, Xu G J and Cao J C 2011 Chin. Phys. B 20 027201
[14] Wang D C, Zhang Y M, Zhang Y M, Lei T M, Guo H, Wang Y H, Tang X Y and Wang H 2011 Chin. Phys. B 20 128101
[15] Li Q, Cheng Z G, Li Z J, Wang Z H and Fang Y 2010 Chin. Phys. B 19 097307
[16] Wu Y Q, Lin Y M, Bol A A, Jenkins K A, Xia F N, Farmer D B, Zhu Y and Avouris P 2011 Nature 472 74
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[7] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[8] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[9] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[10] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[13] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[14] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
[15] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
No Suggested Reading articles found!