Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 126103    DOI: 10.1088/1674-1056/21/12/126103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

First-principles investigation on diffusion behaviours of H isotopes: From W(110) surface into bulk and in bulk W

Liu Yue-Lin (刘悦林)a, Lu Wei (芦苇)a, Gao An-Yuan (高安远)a, Gui Li-Jiang (桂漓江)b, Zhang Ying (张颖)b
a Department of Physics, Yantai University, Yantai 264005, China;
b Department of Physics, Beihang University, Beijing 100191, China
Abstract  The diffusion behaviours of hydrogen (H), deuterium (D), and tritium (T) from W(110) surface into bulk and in bulk W are investigated using a first-principles calculations combined with simplified models. The diffusion energy barrier is shown to be 1.87 eV from W(110) surface to the subsurface, along with a much reduced barrier of 0.06 eV for the reverse diffusion process. After H enters into the bulk, its diffusion energy barrier with quantum correction is 0.19 eV. In terms of the diffusion theory presented by Wert and Zener, the diffusion pre-exponential factor of H is calculated to be 1.57×10-7 m2·s-1, and it is quantitatively in agreement with experimental value of 4.1×10-7 m2·s-1. Subsequently, according to mass dependence (√1/m ) of H isotope effect, the diffusion pre-exponential factors of D and T are estimated to be 1.11×10-7 m2·s-1 and 0.91×10-7 m2·s-1, respectively.
Keywords:  W      hydrogen isotopes      diffusion  
Received:  15 March 2012      Revised:  10 June 2012      Accepted manuscript online: 
PACS:  61.80.Az (Theory and models of radiation effects)  
  67.63.-r (Hydrogen and isotopes)  
  66.30.-h (Diffusion in solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51101135).
Corresponding Authors:  Liu Yue-Lin     E-mail:  liuyl@ytu.edu.cn

Cite this article: 

Liu Yue-Lin (刘悦林), Lu Wei (芦苇), Gao An-Yuan (高安远), Gui Li-Jiang (桂漓江), Zhang Ying (张颖) First-principles investigation on diffusion behaviours of H isotopes: From W(110) surface into bulk and in bulk W 2012 Chin. Phys. B 21 126103

[1] Liu X Y, Wang C Y, Tang Y J, Sun W G and Wu W D 2010 Chin. Phys. B 19 036103
[2] Ruan W, Xie A D, Yu X G and Wu D L 2011 Chin. Phys. B 20 043104
[3] Liu Y L, Zhang Y, Luo G N and Lu G H 2009 J. Nucl. Mater. 390-391 1032
[4] Liu X C, Shu X, Liu Y N, Yu Y, Gao F and Lu G H 2012 J. Nucl. Mater. 426 31
[5] Zhou H B, Liu Y L, Jin S, Zhang Y, Luo G N and Lu G H 2010 Nucl. Fusion 50 115010
[6] Luo G N, Umstadter K, Shu W M, Wampler W and Lu G H 2009 Nucl. Instrum. Methods Phys. Res. B 267 3041
[7] Condon J B and Schober T J 1993 J. Nucl. Mater. 207 1
[8] Causey R A, Wilson K, Venhaus T and Wampler W R 1999 J. Nucl. Mater. 266-269 467
[9] Luo G N, Shu W M and Nishi M 2005 J. Nucl. Mater. 347 111
[10] Yang Z, Yang Y M, Lu G H and Luo G N 2009 J. Nucl. Mater. 390 136
[11] Liu Y L, Jin S and Zhang Y 2012 Chin. Phys. B 21 016105
[12] Liu X C, Shu X, Liu Y N, Gao F and Lu G H 2011 J. Nucl. Mater. 408 12
[13] Liu X C, Gao F and Lu G H 2011 Nucl. Instrum. Methods Phys. Res., Sect. B 267 3199
[14] Yang Z, Xu Q, Liao J, Lu G H and Luo G N 2009 Nucl. Instrum. Methods Phys. Res. B 267 3144
[15] Moore G E and Unterwald F C 1964 J. Chem. Phys. 40 2639
[16] Ryabchikov L N 1964 Ukr. Fiz. Zh. 9 293
[17] Frauenfelder R 1969 J. Vac. Sci. Technol. 6 388
[18] Zakharov A P, Sharapov V M and Evko E I 1973 Fiz. Khim. Mekh. 9 29
[19] Benamati G, Serra E and Wu C H 2000 J. Nucl. Mater. 283-287 1033
[20] Macrander A T and Seidman D N 1984 J. Appl. Phys. 56 1623
[21] Panitz J A 1977 J. Vac. Sci. Technol. 14 502
[22] Wert C and Zener C 1949 Phys. Rev. 76 1169
[23] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[24] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[25] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[26] Blochl P E 1994 Phys. Rev. B 50 17953
[27] Lassner E and Schubert W D 1999 Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds (New York: Kluwer Academic)
[28] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[29] Kittel C 1996 Introduction to Solid State Physics 7th edn. (New York: Wiley)
[30] Huber K P 1979 American Institute of Physics Handbook (New York: McGraw-Hill)
[31] Jonsson H, Mills G and Jacobsen K W 1998 Classical and Quantum Dynamics in Condensed Phase Simulations (New Jersey/London: World Scientific) p. 385
[32] Herlt H J and Bauer E 1986 Surf. Sci. 175 336
[33] Kwak K W, Chou M Y and Troullier N 1996 Phys. Rev. B 53 13735
[34] Willaime F 2003 J. Nucl. Mater. 323 205
[35] Flynn C P and Stoneham A M 1970 Phys. Rev. B 1 3966
[36] Fukai Y 1993 The Metal-Hydrogen System (Berlin: Springer)
[37] Grabert H and Schober H R 1997 in Hydrogen in Metals III ed. H. Wipf (Berlin: Springer) p. 5
[38] Yamashita J and Kurosawa T 1958 J. Phys. Chem. Solids 5 34
[39] Holstein T 1959 Ann. Phys. 8 325
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Tunable phonon-atom interaction in a hybrid optomechanical system
Yao Li(李耀), Chuang Li(李闯), Jiandong Zhang(张建东),Ying Dong(董莹), and Huizhu Hu(胡慧珠). Chin. Phys. B, 2023, 32(4): 044213.
[4] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[5] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[6] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[7] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[8] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[9] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[10] Drift characteristics and the multi-field coupling stress mechanism of the pantograph-catenary arc under low air pressure
Zhilei Xu(许之磊), Guoqiang Gao(高国强), Pengyu Qian(钱鹏宇), Song Xiao(肖嵩), Wenfu Wei(魏文赋), Zefeng Yang(杨泽锋), Keliang Dong(董克亮), Yaguang Ma(马亚光), and Guangning Wu(吴广宁). Chin. Phys. B, 2023, 32(4): 045202.
[11] Simulation of single bubble dynamic process in pool boiling process under microgravity based on phase field method
Chang-Sheng Zhu(朱昶胜), Bo-Rui Zhao(赵博睿), Yao Lei(雷瑶), and Xiu-Ting Guo(郭秀婷). Chin. Phys. B, 2023, 32(4): 044702.
[12] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[13] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[14] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[15] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
No Suggested Reading articles found!