CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Sodium beta-alumina thin films as gate dielectrics for AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors |
Tian Ben-Lang (田本朗), Chen Chao (陈超), Li Yan-Rong (李言荣), Zhang Wan-Li (张万里), Liu Xing-Zhao (刘兴钊) |
The State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electron Science and Technology of China, Chengdu 610054, China |
|
|
Abstract Sodium beta-alumina (SBA) is deposited on AlGaN/GaN by using co-deposition process with using sodium and Al2O3 as the precursors. X-ray diffraction (XRD) spectrum reveals that the deposited thin film is amorphous. The binding energy and composition of the deposited thin film, obtained from the X-ray photoelectron spectroscopy (XPS) measurement are consistent with those of SBA. The dielectric constant of the SBA thin film is about 50. Each of the capacitance-voltage characteristics obtained at five different frequencies shows a high-quality interface between SBA and AlGaN. The interface trap density of metal-insulator-semiconductor high-electron-mobility transistor (MISHEMT) is measured to be (3.5~9.5)×1010 cm-2·eV-1 by the conductance method. The fixed charge density of SBA dielectric is on the order of 2.7×1012 cm-2. Compared with the AlGaN/GaN metal-semiconductor heterostructure high-electron-mobility transistor (MESHEMT), the AlGaN/GaN MISHEMT usually has a threshold voltage that shifts negatively. However, the threshold voltage of the AlGaN/GaN MISHEMT with using SBA as gate dielectric shifts positively from -5.5 V to -3.5 V. From XPS results, the surface valence-band maximum (VBM-EF) of AlGaN is found to decrease from 2.56 eV to 2.25 eV after the SBA thin film deposition. The possible reasons why the threshold voltage of AlGaN/GaN MISHEMT with the SBA gate dielectric shifts positively are the influence of SBA on surface valence-band maximum (VBM-EF), the reduction of interface traps and the effects of sodium ions, and/or the fixed charges in SBA on the two-dimensional electron gas (2DEG).
|
Received: 20 April 2012
Revised: 04 June 2012
Accepted manuscript online:
|
PACS:
|
61.72.uj
|
(III-V and II-VI semiconductors)
|
|
77.55.D-
|
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 50932002). |
Corresponding Authors:
Liu Xing-Zhao
E-mail: xzliu@uestc.edu.cn
|
Cite this article:
Tian Ben-Lang (田本朗), Chen Chao (陈超), Li Yan-Rong (李言荣), Zhang Wan-Li (张万里), Liu Xing-Zhao (刘兴钊) Sodium beta-alumina thin films as gate dielectrics for AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors 2012 Chin. Phys. B 21 126102
|
[1] |
Yue Y Z, Hao Y and Zhang J C 2008 CSIC IEEE 1
|
[2] |
Yue Y Z, Hao Y, Zhang J C, Feng Q, Ni J Y and Ma X H 2008 Chin. Phys. B 17 1405
|
[3] |
Saadat O I, Chung J W, Piner E L and Palacios T 2009 IEEE Electron Dev. Lett. 30 1254
|
[4] |
Feng Q, Tian Y, Bi Z W, Yue Y Z, Ni J Y, Zhang J C, Hao Y and Yang L A 2009 Chin. Phys. B 18 3014
|
[5] |
Ma X H, Pan C Y, Yang L Y, Yu H Y, Yang L, Quan S, Wang H, Zhang J C and Hao Y 2011 Chin. Phys. B 20 027304
|
[6] |
Lu B, Saadat O I and Palacios T 2010 IEEE Electron Dev. Lett. 31 990
|
[7] |
Im K S, Ha J B, Kim K W, Lee J S, Kim D S, Hahm S H and Lee J H 2010 IEEE Electron Dev. Lett. 31 192
|
[8] |
Chang Y C, Chiu H C, Lee Y J, Huang M L, Lee K Y, Hong M, Chiu Y N, Kwo J and Wang Y H 2007 Appl. Phys. Lett. 90 232904
|
[9] |
Kuzmik J, Pozzovivo G, Abermann S, Carlin J F, Gonschorek M, Feltin E, Grandjean N, Bertagnolli E, Strasser G and Pogany D 2008 IEEE Trans. Electron Dev. 55 937
|
[10] |
Deen D A, Binari S C, Storm D F, Katzer D S, Roussos J A, Hackley J C and Gougousi T 2009 IEEE Electron. Lett. 45 423
|
[11] |
Shi J X, Eastman L F, Xin X B and Pophristic M 2009 Appl. Phys. Lett. 95 042103
|
[12] |
Dora Y, Han S, Klenov D, Hansen P J, No K S, Mishra U K, Stemmer S and Speck J S 2006 J. Vac. Sci. Technol. B 24 575
|
[13] |
Abermann S, Pozzovivo G, Kuzmik J, Ostermaier C, Henkel C, Bethge O, Strasser G, Pogany D, Carlin J F, Grandjean N and Bertagnolli E 2009 IEEE Electron. Lett. 45 570
|
[14] |
Ren F, Hao Z B, Wang L, Wang L, Li H T and Luo Y 2010 Chin. Phys. B 19 017306
|
[15] |
Yang L, Hu G Z, Hao Y, Ma X H, Quan S, Yang L Y and Jiang S G 2010 Chin. Phys. B 19 047301
|
[16] |
Wang Z G, Chen Y F, Chen C, Tian B L, Chu F T, Liu X Z and Li Y R 2010 Chin. Phys. B 19 107305
|
[17] |
Klauk H 2009 Nature Mater. 8 853
|
[18] |
Pal B N, Dhar B M, See K C and Katz H E 2009 Nature Mater. 8 898
|
[19] |
Miller E J, Dang X Z, Wieder H H, Asbeck P M, Yu E T, Sullivan G J and Redwing J M 2000 J. Appl. Phys. 87 8070
|
[20] |
Cai Y, Zhou Y, Lau K M and Chen K J 2006 IEEE Trans. Electron Dev. 53 2207
|
[21] |
Huang S, Chen H W and Chen K J 2010 Appl. Phys. Lett. 96 233510
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|