|
|
Transport properties in multi-terminal regular polygonal quantum ring with Rashba spin-orbit coupling |
Tang Han-Zhao (唐翰昭)a, Zhai Li-Xue (翟利学)a, Liu Jian-Jun (刘建军)a b |
a Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024, China; b Department of Physics, Shijiazhuang University, Shijiazhuang 050035, China |
|
|
Abstract Transport properties in multi-terminal regular polygonal quantum ring with Rashba spin-orbit coupling (SOC) are investigated analytically using quantum networks and transport matrix method. The results show that conductances remain at exactly the same values when the output leads are located at axisymmetric positions. However, for the nonaxisymmetrical case, there is a phase difference between the upper and lower arm, which leads to zero conductances appearing periodically. An isotropy of the conductance is destroyed by the Rashba SOC effect in the axisymmetric case. In addition, the position of zero conductance is regulated with the strength of the Rashba SOC.
|
Received: 01 April 2012
Revised: 18 June 2012
Accepted manuscript online:
|
PACS:
|
03.65.Nk
|
(Scattering theory)
|
|
05.60.Gg
|
(Quantum transport)
|
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61176089) and Hebei Provincial Natural Science Foundation, China (Grant No. A2011205092). |
Corresponding Authors:
Liu Jian-Jun
E-mail: liujj@mail.hebtu.edu.cn
|
Cite this article:
Tang Han-Zhao (唐翰昭), Zhai Li-Xue (翟利学), Liu Jian-Jun (刘建军) Transport properties in multi-terminal regular polygonal quantum ring with Rashba spin-orbit coupling 2012 Chin. Phys. B 21 120303
|
[1] |
Prinz G A 1998 Science 282 1660
|
[2] |
Bychkov Y A and Rashba E I 1984 J. Phys. C 17 6039
|
[3] |
Timp G, Chang A M, Cunningham J E, Chang T Y, Mankiewich P, Behringer R and Howard R E 1987 Phys. Rev. Lett. 58 2814
|
[4] |
Nitta J, Akazaki T, Takayanagi H and Enoki T 1997 Phys. Rev. Lett. 78 1335
|
[5] |
Aharonov Y and Bohm D 1959 Phys. Rev. 115 485
|
[6] |
Aharonov Y and Casher A 1984 Phys. Rev. Lett. 53 319
|
[7] |
Büttiker M, Imry Y and Azbel M Y 1984 Phys. Rev. A 30 1982
|
[8] |
Loss D, Goldbart P and Balatsky A V 1990 Phys. Rev. Lett. 65 1655
|
[9] |
Aronov A G and Lyanda-Geller Y B 1993 Phys. Rev. Lett. 70 343
|
[10] |
Frustaglia D, Hentschel M and Richter K 2004 Phys. Rev. B 69 155327
|
[11] |
Molnár B, Peeters F M and Vasilopoulos P 2004 Phys. Rev. B 69 155335
|
[12] |
Frustaglia D and Richter K 2004 Phys. Rev. B 69 235310
|
[13] |
Aeberhard U, Wakabayashi K and Sigrist M 2005 Phys. Rev. B 72 075328
|
[14] |
Citro R, Romeo F and Marinaro M 2006 Phys. Rev. B 74 115329
|
[15] |
Wang M and Chang K 2008 Phys. Rev. B 77 125330
|
[16] |
Fuhrer A, Lüscher S, Ihn T, Heinzel T, Ensslin K, Wegscheider W and Bichler M 2001 Nature Phys. 413 822
|
[17] |
Keyser U F, Fühner C, Borck S, Haug R J, Bichler M, Abstreiter G and Wegscheider W 2003 Phys. Rev. Lett. 90 196601
|
[18] |
Liu Y M, Yu Z Y, Jia B Y, Xu Z H, Yao W J, Chen Z H, Lu P F and Han L H 2009 Chin. Phys. B 18 4667
|
[19] |
Chi F, Sun L L, Huang L and Zhao J 2011 Chin. Phys. B 20 017303
|
[20] |
Jia B Y, Yu Z Y, Liu Y M, Han L H, Yao W J, Feng H and Ye H 2011 Chin. Phys. B 20 067301
|
[21] |
Zhai L X, Wang Y and Liu J J 2010 Phys. Lett. A 374 4548
|
[22] |
Bercioux D, Governale M, Cataudella V and Ramaglia V M 2004 Phys. Rev. Lett. 93 056802
|
[23] |
Bercioux D, Governale M, Cataudella V and Ramaglia V M 2005 Phys. Rev. B 72 075305
|
[24] |
Ramaglia V M, Cataudella V, Filippis G D and Perroni C A 2006 Phys. Rev. B 73 155328
|
[25] |
Bercioux D, Frustaglia D and Governale M 2005 Phys. Rev. B 72 113310
|
[26] |
Koga T, Nitta J and van Veenhuizen M J 2004 Phys. Rev. B 70 161302R
|
[27] |
van Veenhuizen M J, Koga T and Nitta J 2006 Phys. Rev. B 73 235315
|
[28] |
Koga T, Sekine Y and Nitta J 2006 Phys. Rev. B 74 041302R
|
[29] |
Li P and Deng W J 2009 Acta Phys. Sin. 58 2713 (in Chinese)
|
[30] |
Szafran B and Poniedzialek M R 2009 Phys. Rev. B 80 155334
|
[31] |
Fu B and Deng W J 2010 Acta Phys. Sin. 59 2739 (in Chinese)
|
[32] |
Strambini E, Piazza V, Biasiol G, Sorba L and Beltram F 2009 Phys. Rev. B 79 195443
|
[33] |
Xia J B 1992 Phys. Rev. B 45 3593
|
[34] |
Mireles F and Kirczenow G 2001 Phys. Rev. B 64 024426
|
[35] |
Governale M and Zülicke U 2002 Phys. Rev. B 66 073311
|
[36] |
Vidal J, Montambaux G and Doucot B 2000 Phys. Rev. B 62 R16294
|
[37] |
Kottos T and Smilansky U 1999 Ann. Phys. (N.Y.) 274 76
|
[38] |
Büttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B 31 6207
|
[39] |
Landauer R 1970 Philos. Mag. 21 863
|
[40] |
Yi J, Cuniberti G and Porto M 2003 Eur. Phys. J. B 33 221
|
[41] |
Lee H W and Kim C S 2001 Phys. Rev. B 63 075306
|
[42] |
Kim T S, Cho S Y, Kim C K and Ryu C M 2002 Phys. Rev. B 65 245307
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|