Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 120302    DOI: 10.1088/1674-1056/21/12/120302
GENERAL Prev   Next  

Approximate any l-state solutions of Dirac equation for modified deformed Hylleraas potential by the Nikiforov–Uvarov method

H. Hassanabadia, E. Maghsoodia, S. Zarrinkamarb, H. Rahimovc
a Physics Department, Shahrood University of Technology, Shahrood, Iran;
b Department of Basic Sciences, Garmsar Branch, Islamic Azad University, Garmsar, Iran;
c Computer Engineering Department, Shahrood University of Technology, Shahrood, Iran
Abstract  We inquire into spin and pseudospin symmetries of Dirac equation under modified deformed Hylleraas potential via a Pekeris approximation and the Nikiforov-Uvarov technique. A tensor interaction of Coulomb form is considered and its degeneracy-removing role is discussed in detail. The solutions are reported for arbitrary quantum number in a compact form and useful numerical data are included.
Keywords:  Dirac equation      spin symmetry      pseudospin symmetry      modified Hylleraas potential  
Received:  15 February 2012      Revised:  26 July 2012      Accepted manuscript online: 
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  03.65.Pm (Relativistic wave equations)  
  02.30.Gp (Special functions)  
Corresponding Authors:  H. Hassanabadi     E-mail:  h.hasanabadi@shahroodut.ac.ir

Cite this article: 

H. Hassanabadi, E. Maghsoodi, S. Zarrinkamar, H. Rahimov Approximate any l-state solutions of Dirac equation for modified deformed Hylleraas potential by the Nikiforov–Uvarov method 2012 Chin. Phys. B 21 120302

[1] Ginocchio J N 2005 Phys. Rep. 414 165
[2] Ginocchio J N and Leviatan A 1998 Phys. Lett. B 425 1
[3] Mao G 2003 Phys. Rev. C 67 044318
[4] Alberto P, Lisboa R, Malheiro M and de Castro A S 2005 Phys. Rev. C 71 034313
[5] Furnstahl R F, Rusnak J J and Serot B D 1998 Nucl. Phys. A 632 607
[6] Wei G F and Dong S H 2008 Phys. Lett. A 373 49
[7] Wei G F and Dong S H 2009 Europhys. Lett. 87 40004
[8] Nazarewicz W, et al. 1990 Phys. Rev. Lett. 64 1654
[9] Wei G F and Dong S H 2010 Phys. Scr. 81 035009
[10] Zarrinkamar S, Rajabi A A and Hassanabadi H 2010 Ann. Phys. (New York) 325 2522
[11] Hassanabadi H, Maghsoodi E, Zarrinkamar S and Rahimov H 2011 Mod. Phys. Lett. A 36 2703
[12] Ikhdair S M and Sever R 2008 Int. J. Mod. Phys. C 19 221
[13] Wei G F and Dong S H 2010 Eur. Phys. J. A 46 207
[14] Wei G F and Dong S H 2010 Phys. Lett. B 686 288
[15] Dong S H 2001 Phys. Scr. 64 273
[16] Wei G F and Dong S H 2010 Phys. Lett. B 686 288
[17] Chen T, Liu J and Jia C 2009 Phys. Scr. 79 055002
[18] Dong S H, Chen C Y and Lozada-Cassou M 2005 Int. J. Quantum Chem. 105 453
[19] Agboola D 2010 Chin. Phys. Lett. 27 040301
[20] Berkdemir C 2006 Nucl. Phys. A 770 32
[21] Chen T S, Lü H F, Meng J, Zhang S Q and Zhou S G 2003 Chin. Phys. Lett. 20 358
[22] Qiang W C and Dong S H 2009 Phys. Scr. 79 045004
[23] Guo J Y, Zhou F, Guo F L and Zhou J H 2007 Int. J. Mod. Phys. A 22 4825
[24] Qiang W C, Zhou R S and Gao Y 2007 J. Phys. A: Math. Theor. 40 1677
[25] Eshghi M and Mehraban H 2012 Few Body Sys. 52 41
[26] Aydogdu O and Sever R 2010 Few Body Sys. 47 193
[27] Setare M R and Nazari Z 2010 Acta Physica Polonica B 41 2459
[28] Jia C S, Gao P and Peny X L 2006 J. Phys. A: Math. Gen. 39 7737
[29] Wei G F, Dong S H and Bezerra V B 2009 Int. J. Mod. Phys. A 24 161
[30] Varshni Y P 1957 Rev. Mod. Phys. 29 664
[31] Hylleraas E A 1935 J. Chem. Phys. 3 595
[32] Ikot A N, Awoga O A and Antia A D arXiv:1203.6779
[33] Nikiforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Basle: Birkhauser)
[1] Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach
Wen-Li Chen(陈文利) and I B Okon. Chin. Phys. B, 2022, 31(5): 050302.
[2] Solution of Dirac equation for Eckart potential and trigonometric Manning Rosen potential using asymptotic iteration method
Resita Arum Sari, A Suparmi, C Cari. Chin. Phys. B, 2016, 25(1): 010301.
[3] Approximate analytical solution of the Dirac equation with q-deformed hyperbolic Pöschl-Teller potential and trigonometric Scarf Ⅱ non-central potential
Ade Kurniawan, A. Suparmi, C. Cari. Chin. Phys. B, 2015, 24(3): 030302.
[4] Unsuitable use of spin and pseudospin symmetries with a pseudoscalar Cornell potential
L. B. Castro, A. S. de Castro. Chin. Phys. B, 2014, 23(9): 090301.
[5] Solution of Dirac equation around a charged rotating black hole
Lü Yan (吕嫣), Hua Wei (花巍). Chin. Phys. B, 2014, 23(4): 040403.
[6] Bound state solutions of the Dirac equation with the Deng–Fan potential including a Coulomb tensor interaction
S. Ortakaya, H. Hassanabadi, B. H. Yazarloo. Chin. Phys. B, 2014, 23(3): 030306.
[7] Relativistic effect of pseudospin symmetry and tensor coupling on the Mie-type potential via Laplace transformation method
M. Eshghi, S. M. Ikhdair. Chin. Phys. B, 2014, 23(12): 120304.
[8] Spin and pseudospin symmetric Dirac particles in the field of Tietz–Hua potential including Coulomb tensor interaction
Sameer M. Ikhdair, Majid Hamzavi. Chin. Phys. B, 2013, 22(9): 090305.
[9] Pseudoscalar Cornell potential for a spin-1/2 particle under spin and pseudospin symmetries in 1+1 dimension
M. Hamzavi, A. A. Rajabi. Chin. Phys. B, 2013, 22(9): 090301.
[10] Relativistic symmetries in the Hulthén scalar–vector–tensor interactions
Majid Hamzavi, Ali Akbar Rajabi. Chin. Phys. B, 2013, 22(8): 080302.
[11] Relativistic symmetries with the trigonometric Pöschl-Teller potential plus Coulomb-like tensor interaction
Babatunde J. Falaye, Sameer M. Ikhdair. Chin. Phys. B, 2013, 22(6): 060305.
[12] Relativistic symmetries in Rosen–Morse potential and tensor interaction using the Nikiforov–Uvarov method
Sameer M Ikhdair, Majid Hamzavi. Chin. Phys. B, 2013, 22(4): 040302.
[13] Exact solutions of Dirac equation with Pöschl–Teller double-ring-shaped Coulomb potential via Nikiforov–Uvarov method
E. Maghsoodi, H. Hassanabadi, S. Zarrinkamar. Chin. Phys. B, 2013, 22(3): 030302.
[14] Relativistic symmetry of position-dependent mass particle in Coulomb field including tensor interaction
M. Eshghi, M. Hamzavi, S. M. Ikhdair. Chin. Phys. B, 2013, 22(3): 030303.
[15] Spin and pseudospin symmetries of the Dirac equation with shifted Hulthén potential using supersymmetric quantum mechanics
Akpan N. Ikot, Elham Maghsoodi, Eno J. Ibanga, Saber Zarrinkamar, Hassan Hassanabadi. Chin. Phys. B, 2013, 22(12): 120302.
No Suggested Reading articles found!