Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 047307    DOI: 10.1088/1674-1056/23/4/047307
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic and transport properties of V-shaped defect zigzag MoS2 nanoribbons

Li Xin-Mei (李新梅)a, Long Meng-Qiu (龙孟秋)a, Cui Li-Ling (崔丽玲)a b, Xiao Jin (肖金)a, Xu Hui (徐慧)a
a Institute of Super-microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics,Central South University, Changsha 410083, China;
b School of Science, Hunan University of Technology, Zhuzhou 412007, China
Abstract  Based on the nonequilibrium Green's function (NEGF) in combination with density functional theory (DFT) calculations, we study the electronic structures and transport properties of zigzag MoS2 nanoribbons (ZMNRs) with V-shaped vacancy defects on the edge. The vacancy formation energy results show that the zigzag vacancy is easier to create on the edge of ZMNR than the armchair vacancy. Both of the defects can make the electronic band structures of ZMNRs change from metal to semiconductor. The calculations of electronic transport properties depict that the currents drop off clearly and rectification ratios increase in the defected systems. These effects would open up possibilities for their applications in novel nanoelectronic devices.
Keywords:  transport property      zigzag MoS2 nanoribbons      V-shaped defect      first-principles  
Received:  09 August 2013      Revised:  10 September 2013      Accepted manuscript online: 
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  73.23.-b (Electronic transport in mesoscopic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21103232, 51272291, and 11174371).
Corresponding Authors:  Long Meng-Qiu, Xu Hui     E-mail:  mqlong@csu.edu.cn;cmpxhg@csu.edu.cn
About author:  73.63.-b; 73.23.-b

Cite this article: 

Li Xin-Mei (李新梅), Long Meng-Qiu (龙孟秋), Cui Li-Ling (崔丽玲), Xiao Jin (肖金), Xu Hui (徐慧) Electronic and transport properties of V-shaped defect zigzag MoS2 nanoribbons 2014 Chin. Phys. B 23 047307

[1] Tawinan C and Walter R L L 2012 Phys. Rev. B 85 205302
[2] Fornarini L, Stirpe F and Scrosati B 1981 Solar Energy Mater. 5 107
[3] Zong X, Yan H J, Wu G P, Ma G J, Wen F Y, Wang L and Li C 2008 J. Am. Chem. Soc. 130 7176
[4] Xiang Q J, Yu J G and Jaroniec 2012 J. Am. Chem. Soc. 134 6575
[5] Hu K H, Hu X G, Wang J, Xu Y F and Han C L 2012 Tribol. Lett. 47 79
[6] Tian L, Zhou Q L, Zhao K, Shi Y L, Zhao D M, Zhao S Q, Zhao H, Bao R M, Zhu S M, Miao Q and Zhang C L 2011 Chin. Phys. B 20 010703
[7] Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M W and Chhowalla M 2011 Nano Lett. 11 5111
[8] Coleman J N, Lotya M, O'Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J, Shvets I V, Arora S K, Stanton G, Kim H Y, Lee K, Kim G T, Duesberg G S, Hallam T, Boland J J, Wang J J, Donegan J F, Grunlan J C, Moriarty G, Shmeliov A, Nicholls R J, Perkins J M, Grieveson E M, Theuwissen K, McComb D W, Nellist P D and Nicolosi V 2011 Science 331 568
[9] Lee Y H, Zhang X Q, Zhang W J, Chang M T, Lin C T, Chang K D, Yu Y C, Qang J T W, Chang C S, Li L J and Lin T W 2012 Adv. Mater. 24 2320
[10] Smith R J, King P J, Lotya M, Wirtz C, Khan U, De S, O'Neill A, Duesberg G S, Grunlan J C, Moriarty G, Chen J, Wang J Z, Minett A I, Nicolosi V and Coleman J N 2011 Adv. Mater. 23 3944
[11] Shi Y M, Zhou W, Lu A Y, Fang W J, Lee Y H, Hsu A L, Kim S M, Kin K K, Yang H Y, Li L J, Idrobo J C and Kong J 2012 Nano Lett. 12 2784
[12] Lee H S, Min S W, Chang Y G, Park M K, Nam T, Kim H, Kim J H, Ryu S and Im S 2012 Nano Lett. 12 3695
[13] Zhang Y J, Ye J T, Matsuhashi Y and Iwasa Y 2012 Nano Lett. 12 1136
[14] Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D and Zhang H 2012 ACS Nano. 6 74
[15] Radisavljevic B, Whitwick M B and Kis A 2012 Appl. Phys. Lett. 101 043103
[16] Alkis S, Öztas T, Aygün L E, Bozkurt F, Okyay A K and Ortac B 2012 Opt. Express 20 21815
[17] Li Q, Newberg J T, Walter E C, Hemminge R J C and Penner R M 2004 Nano Lett. 4 277
[18] Wang Z, Li H, Liu Z, Shi Z, Lu J, Suenaga K, Joung S K, Okazaki T, Gu Z, Zhou J, Gao Z, Li G, Sanvito S, Wang E and Lijima S 2010 J. Am. Chem. Soc. 132 13840
[19] Li Y F, Zhou Z, Zhang S B and Chen Z F 2008 J. Am. Chem. Soc. 130 16739
[20] Ataca C, Sahin H, Aktürk E and Ciraci S 2011 J. Phys. Chem. C 115 3934
[21] Pan H and Zhang Y W 2012 J. Mater. Chem. 22 7280
[22] Pan H and Zhang Y W 2012 J. Phys. Chem. C 116 11752
[23] Cuong N T, Otani M and Okada S 2013 Phys. Rev. B 87 045424
[24] Yu X X, Xie Y E, Ouyang T and Chen Y P 2012 Chin. Phys. B 21 107202
[25] Chen L N, Ma S S, Ouyang F P, Wu X Z, Xiao J and Xu H 2010 Chin. Phys. B 19 097301
[26] Tian H Y and W J 2012 Chin. Phys. B 21 017203
[27] Yang S Q, Li D X, Zhang T R, Tao Z L and Chen J 2012 J. Phys. Chem. C 116 1307
[28] Erdogan E, Popov I H, Enyashin A N and Seifert G 2012 Eur. Phys. J. B 85 33
[29] Shidpour R and Manteghian M 2010 Nanoscale 2 1429
[30] Zhang X J, Chen K Q, Tang L M and Long M Q 2011 Phys. Lett. A 375 3319
[31] Kohn W and Sham L J 1965 Phys. Rev. A 140 1133
[32] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864
[33] John P P, Kieron B and Matthias E 1996 Phys. Rev. Lett. 77 3865
[34] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[35] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[36] Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
[37] Zeng M G, Feng Y P and Liang G C 2011 Nano Lett. 11 1369
[38] See http://quantumwise.com/, for ATOMISTIX TOOLKIT
[39] Buttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B 31 6207
[40] Dan X, Yao K L, Gao G Y and Ma G Q 2013 Chin. Phys. B 22 047507
[41] Qiao Z J, Chen G D, Ye H G, Wu Y L, Niu H B and Zhu Y Z 2012 Chin. Phys. B 21 087101
[42] Pan H, Feng Y P, Wu Q Y and Huang Z G 2008 Phys. Rev. B 77 125211
[43] Xu H J and Li X J 2008 Appl. Phys. Lett. 93 172105
[44] Aparecido-Ferreeira A, Miyazaki H, Li S L, Komatsu K, Nakaharai S and Tsukaqoshi K 2012 Nanoscale 4 7842
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[9] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[10] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[11] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[12] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[13] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[14] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[15] Topological properties of Sb(111) surface: A first-principles study
Shuangxi Wang(王双喜) and Ping Zhang(张平). Chin. Phys. B, 2022, 31(4): 047105.
No Suggested Reading articles found!