Electronic and transport properties of V-shaped defect zigzag MoS2 nanoribbons
Li Xin-Mei (李新梅)a, Long Meng-Qiu (龙孟秋)a, Cui Li-Ling (崔丽玲)a b, Xiao Jin (肖金)a, Xu Hui (徐慧)a
a Institute of Super-microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics,Central South University, Changsha 410083, China; b School of Science, Hunan University of Technology, Zhuzhou 412007, China
Abstract Based on the nonequilibrium Green's function (NEGF) in combination with density functional theory (DFT) calculations, we study the electronic structures and transport properties of zigzag MoS2 nanoribbons (ZMNRs) with V-shaped vacancy defects on the edge. The vacancy formation energy results show that the zigzag vacancy is easier to create on the edge of ZMNR than the armchair vacancy. Both of the defects can make the electronic band structures of ZMNRs change from metal to semiconductor. The calculations of electronic transport properties depict that the currents drop off clearly and rectification ratios increase in the defected systems. These effects would open up possibilities for their applications in novel nanoelectronic devices.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21103232, 51272291, and 11174371).
Corresponding Authors:
Long Meng-Qiu, Xu Hui
E-mail: mqlong@csu.edu.cn;cmpxhg@csu.edu.cn
About author: 73.63.-b; 73.23.-b
Cite this article:
Li Xin-Mei (李新梅), Long Meng-Qiu (龙孟秋), Cui Li-Ling (崔丽玲), Xiao Jin (肖金), Xu Hui (徐慧) Electronic and transport properties of V-shaped defect zigzag MoS2 nanoribbons 2014 Chin. Phys. B 23 047307
[1]
Tawinan C and Walter R L L 2012 Phys. Rev. B 85 205302
[2]
Fornarini L, Stirpe F and Scrosati B 1981 Solar Energy Mater. 5 107
[3]
Zong X, Yan H J, Wu G P, Ma G J, Wen F Y, Wang L and Li C 2008 J. Am. Chem. Soc. 130 7176
[4]
Xiang Q J, Yu J G and Jaroniec 2012 J. Am. Chem. Soc. 134 6575
[5]
Hu K H, Hu X G, Wang J, Xu Y F and Han C L 2012 Tribol. Lett. 47 79
[6]
Tian L, Zhou Q L, Zhao K, Shi Y L, Zhao D M, Zhao S Q, Zhao H, Bao R M, Zhu S M, Miao Q and Zhang C L 2011 Chin. Phys. B 20 010703
[7]
Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M W and Chhowalla M 2011 Nano Lett. 11 5111
[8]
Coleman J N, Lotya M, O'Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J, Shvets I V, Arora S K, Stanton G, Kim H Y, Lee K, Kim G T, Duesberg G S, Hallam T, Boland J J, Wang J J, Donegan J F, Grunlan J C, Moriarty G, Shmeliov A, Nicholls R J, Perkins J M, Grieveson E M, Theuwissen K, McComb D W, Nellist P D and Nicolosi V 2011 Science 331 568
[9]
Lee Y H, Zhang X Q, Zhang W J, Chang M T, Lin C T, Chang K D, Yu Y C, Qang J T W, Chang C S, Li L J and Lin T W 2012 Adv. Mater. 24 2320
[10]
Smith R J, King P J, Lotya M, Wirtz C, Khan U, De S, O'Neill A, Duesberg G S, Grunlan J C, Moriarty G, Chen J, Wang J Z, Minett A I, Nicolosi V and Coleman J N 2011 Adv. Mater. 23 3944
[11]
Shi Y M, Zhou W, Lu A Y, Fang W J, Lee Y H, Hsu A L, Kim S M, Kin K K, Yang H Y, Li L J, Idrobo J C and Kong J 2012 Nano Lett. 12 2784
[12]
Lee H S, Min S W, Chang Y G, Park M K, Nam T, Kim H, Kim J H, Ryu S and Im S 2012 Nano Lett. 12 3695
[13]
Zhang Y J, Ye J T, Matsuhashi Y and Iwasa Y 2012 Nano Lett. 12 1136
[14]
Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D and Zhang H 2012 ACS Nano. 6 74
[15]
Radisavljevic B, Whitwick M B and Kis A 2012 Appl. Phys. Lett. 101 043103
[16]
Alkis S, Öztas T, Aygün L E, Bozkurt F, Okyay A K and Ortac B 2012 Opt. Express 20 21815
[17]
Li Q, Newberg J T, Walter E C, Hemminge R J C and Penner R M 2004 Nano Lett. 4 277
[18]
Wang Z, Li H, Liu Z, Shi Z, Lu J, Suenaga K, Joung S K, Okazaki T, Gu Z, Zhou J, Gao Z, Li G, Sanvito S, Wang E and Lijima S 2010 J. Am. Chem. Soc. 132 13840
[19]
Li Y F, Zhou Z, Zhang S B and Chen Z F 2008 J. Am. Chem. Soc. 130 16739
[20]
Ataca C, Sahin H, Aktürk E and Ciraci S 2011 J. Phys. Chem. C 115 3934
[21]
Pan H and Zhang Y W 2012 J. Mater. Chem. 22 7280
[22]
Pan H and Zhang Y W 2012 J. Phys. Chem. C 116 11752
[23]
Cuong N T, Otani M and Okada S 2013 Phys. Rev. B 87 045424
[24]
Yu X X, Xie Y E, Ouyang T and Chen Y P 2012 Chin. Phys. B 21 107202
[25]
Chen L N, Ma S S, Ouyang F P, Wu X Z, Xiao J and Xu H 2010 Chin. Phys. B 19 097301
[26]
Tian H Y and W J 2012 Chin. Phys. B 21 017203
[27]
Yang S Q, Li D X, Zhang T R, Tao Z L and Chen J 2012 J. Phys. Chem. C 116 1307
[28]
Erdogan E, Popov I H, Enyashin A N and Seifert G 2012 Eur. Phys. J. B 85 33
[29]
Shidpour R and Manteghian M 2010 Nanoscale 2 1429
[30]
Zhang X J, Chen K Q, Tang L M and Long M Q 2011 Phys. Lett. A 375 3319
[31]
Kohn W and Sham L J 1965 Phys. Rev. A 140 1133
[32]
Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864
[33]
John P P, Kieron B and Matthias E 1996 Phys. Rev. Lett. 77 3865
[34]
Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[35]
Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[36]
Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
[37]
Zeng M G, Feng Y P and Liang G C 2011 Nano Lett. 11 1369
[38]
See http://quantumwise.com/, for ATOMISTIX TOOLKIT
[39]
Buttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B 31 6207
[40]
Dan X, Yao K L, Gao G Y and Ma G Q 2013 Chin. Phys. B 22 047507
[41]
Qiao Z J, Chen G D, Ye H G, Wu Y L, Niu H B and Zhu Y Z 2012 Chin. Phys. B 21 087101
[42]
Pan H, Feng Y P, Wu Q Y and Huang Z G 2008 Phys. Rev. B 77 125211
[43]
Xu H J and Li X J 2008 Appl. Phys. Lett. 93 172105
[44]
Aparecido-Ferreeira A, Miyazaki H, Li S L, Komatsu K, Nakaharai S and Tsukaqoshi K 2012 Nanoscale 4 7842
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.