Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 120304    DOI: 10.1088/1674-1056/21/12/120304
GENERAL Prev   Next  

Approximate solution of the spin-one Duffin-Kemmer-Petiau (DKP) equation under a non-minimal vector Yukawa potential in (1+1)-dimensions

H. Hassanabadia, Z. Molaeeb
a Physics Department, Shahrood University of Technology, Shahrood, Iran;
b Physics Department, Semnan University, Semnan, Iran
Abstract  We solve the Duffin-Kemmer-Petiau (DKP) equation with a non-minimal vector Yukawa potential in (1+1)-dimensional space-time for spin-1 particles. The Nikiforov-Uvarov method is used in the calculations, and the eigenfunctions as well as the energy eigenvalues are obtained in a proper Pekeris-type approximation.
Keywords:  DKP equation      non-minimal vector Yukawa potential      Nikiforov-Uvarov method  
Received:  02 May 2012      Revised:  14 June 2012      Accepted manuscript online: 
PACS:  03.65.Pm (Relativistic wave equations)  
  03.65.Ca (Formalism)  
  98.80.Cq (Particle-theory and field-theory models of the early Universe (including cosmic pancakes, cosmic strings, chaotic phenomena, inflationary universe, etc.))  
Corresponding Authors:  H. Hassanabadi     E-mail:  h.hasanabadi@shahroodut.ac.ir

Cite this article: 

H. Hassanabadi, Z. Molaee Approximate solution of the spin-one Duffin-Kemmer-Petiau (DKP) equation under a non-minimal vector Yukawa potential in (1+1)-dimensions 2012 Chin. Phys. B 21 120304

[1] Petiau G, Ph. D Thesis, University of Paris, 1936; Acad. R. Belg. Cl. Sci. Mem. Collect. 8, 16 (1936)
[2] Duffin R J 1938 Phys. Rev. Lett. 54 1114
[3] Kemmer N 1939 Proc. Roy. Soc. A 173 91
[4] Umezawa H 1956 Quantum Field Theory (Amsterdam: North-Holland)
[5] Akhiezer A I and Berestetskii V B 1969 Quantum Electrodynamics (in Russian), Moscow: Nauka; English transl. Prev. ed., Old bourne, London (1972)
[6] Kinoshita T 1950 Prog. Theor. Phys. 5 473
[7] Kinoshita T and Nambu Y 1950 Prog. Theor. Phys. 5 749
[8] Krajcik R A and Nieto M M 1977 Am. J. Phys. 45 818
[9] Pimentel B M and Fainberg V Ya 2000 Teoret. Mat. Fiz. 124 445
[10] Ruegg H and Ruiz-Altaba M 2003 arXiv: 0304245v1
[11] Kanatchikov I 2000 Rep. Math. Phys. 46 107
[12] Boumali A 2007 Phys. Scr. 76 669
[13] Nedjadi Y and Barrett R C 1994 J. Phys. A 27 4301
[14] Nedjadi Y and Barrett R C 1994 J. Math. Phys. 35 4517
[15] Boumali A 2008 J. Math. Phys. 49 022302
[16] Lunardi J T, Pimentel B M, Teixeira R G and Valverde J S 2000 Phys. Lett. A 268 165
[17] Lunardi J T, Manzoni L A, Pimentel B M and Valverde J S 2002 Int. J. Mod. Phys. A 17 205
[18] Kerr L K, Clark B C, Hama S, Ray L and Hoffmann G W 2000 Prog. Theor. Phys. 103 321
[19] de Montigny M, Khanna F C, Santana A E, Santos E S and Vianna J D M 2000 J. Phys. A: Math. Gen. 33 L273
[20] Oudi R, Hassanabadi S, Rajabi A A and Hassanabadi H 2012 Commun. Theor. Phys. 57 15
[21] Hassanabadi H, Forouhandeh S F, Rahimov H, Zarrinkamar S and Yazarloo B H 2012 Can. J. Phys. 90 299
[22] Chargui Y, Trabelsi A and Chetouani L 2010 Phys. Lett. A 374 2907
[23] Zarrinkamar S, Rajabi A A, Rahimov H and Hassanabadi H 2011 Mod. Phys. Lett. A 26 1621
[24] Hassanabadi H, Yazarloo B H, Zarrinkamar S and Rajabi A A 2011 Phys. Rev. C 84 064003
[25] Merad M 2007 Int. J. Theor. Phys. 46 2105
[26] Pekeris C L 1934 Phys. Rev. 45 98
[27] Nikiforov A F and Uvarov V B 1988 Special Function of Mathematical Physics (Basel: Birkhauser)
[28] Tezcan C and Sever R 2009 Int. J. Theor. Phys. 48 337
[1] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[2] Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach
Wen-Li Chen(陈文利) and I B Okon. Chin. Phys. B, 2022, 31(5): 050302.
[3] Relativistic symmetries of Deng–Fan and Eckart potentials with Coulomb-like and Yukawa-like tensor interactions
Akpan N. Ikot, S. Zarrinkamar, B. H. Yazarloo, H. Hassanabadi. Chin. Phys. B, 2014, 23(10): 100306.
[4] Bound state solutions of d-dimensional Schrödinger equation with Eckart potential plus modified deformed Hylleraas potential
Akpan N. Ikot, Oladunjoye A. Awoga, Akaninyene D. Antia. Chin. Phys. B, 2013, 22(2): 020304.
[5] The spin-one Duffin–Kemmer–Petiau equation in the presence of pseudo-harmonic oscillatory ring-shaped potential
H. Hassanabadi, M. Kamali. Chin. Phys. B, 2013, 22(10): 100304.
[6] Effects of external fields on two-dimensional Klein–Gordon particle under pseudo-harmonic oscillator interaction
Sameer M. Ikhdair, Majid Hamzavi. Chin. Phys. B, 2012, 21(11): 110302.
No Suggested Reading articles found!