Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 118202    DOI: 10.1088/1674-1056/21/11/118202
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Entropy dominated behaviors of confined polymer-nanoparticle composites

Cao Xue-Zheng (曹学正)a, Merlitz Holgera b, Sommer Jens-Uweb, Wu Chen-Xu (吴晨旭 )a
a Department of Physics and ITPA, Xiamen University, Xiamen 361005, China;
b Leibniz-Institut für Polymerforschung Dresden, Dresden 01069, Germany
Abstract  The stretched polymers would lose their possible configurations if they are mixed with nanoparticles or touch on a hard wall, which leads to a strong depletion attraction responsible for the enrichment of nanoparticles near substrates. Moreover, it is found that there exists a sacrifice mechanism in confined pure polymer samples or polymer-nanoparticle mixtures that part of polymers in order to reach a minimum free energy for the total system, are adsorbed on hard walls even by losing their conformation. The understanding based on the current study provides a simple yet effective approach for the design of thin polymer composites.
Keywords:  conformation entropy      nanoparticle      depletion attraction      thin polymer layer  
Received:  19 June 2012      Revised:  20 July 2012      Accepted manuscript online: 
PACS:  82.35.Np (Nanoparticles in polymers)  
  34.20.Gj (Intermolecular and atom-molecule potentials and forces)  
  36.20.Ey (Conformation (statistics and dynamics))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974162 and 11074208).
Corresponding Authors:  Wu Chen-Xu     E-mail:  cxwu@xmu.edu.cn

Cite this article: 

Cao Xue-Zheng (曹学正), Merlitz Holger, Sommer Jens-Uwe, Wu Chen-Xu (吴晨旭 ) Entropy dominated behaviors of confined polymer-nanoparticle composites 2012 Chin. Phys. B 21 118202

[1] Bockstaller M R, Lapetnikov Y, Margel S and Thomas E L 2003 J. Am. Chem. Soc. 125 5276
[2] Lin Y, Boker A, He J, Sill K, Xiang H Q, Abetz C, Li X F, Wang J, Emrick Todd, Long S, Wang Q, Balazs A and Russell T P 2005 Nature 434 55
[3] Balazs A C, Emrick T and Russell T P 2006 Science 314 1107
[4] Mackay M E, Tuteja A, Duxbury P M, Hawker C J, Horn B V, Guan Z, Chen G and Krishnan R S 2006 Science 311 1740
[5] Lee J Y, Buxton G A and Balazs A C 2004 J. Chem. Phys. 121 5531
[6] He G L, Merlitz H, Sommer J U and Wu C X 2007 Eur. Phys. J. E 24 325
[7] Kremer K and Grest G S 1990 J. Chem. Phys. 92 5057
[8] Merlitz H, He G L, Sommer J U and Wu C X 2009 Macromolecules 42 445
[9] Cao X Z, Merlitz H, Wu C X and Sommer J U 2011 Phys. Rev. E 84 041802
[10] Hooper J B and Schweizer K S 2006 Macromolecules 39 5133
[11] Poon W C K 2002 J. Phys.: Condens. Mat. 14 R859
[12] Gast A P, Russell W B and Hall C K 1986 J. Colloid Interface Sci. 109 161
[13] Llett S M, Orrock A, Poon W C K and Pusey P N 1995 Phys. Rev. E 51 1344
[14] Tyagi S, Lee J Y, Buxton G A and Balazs A C 2004 Macromolecules 37 9160
[15] Gupta S, Zhang Q, Emrick T, Balazs A C and Russell T P 2006 Nature Mater. 10 1038
[16] McGarrity E S, Frischknecht A L, Frink L J D and Mackay M E 2007 Phys. Rev. Lett. 99 238302
[17] McGarrity E S, Frischknecht A L and Mackay M E 2008 J. Chem. Phys. 128 154904
[18] Lee J Y, Zhang Q, Emrick T and Crosby A J 2006 Macromolecules 39 7392
[19] Fryer D S, Nealey P F and dePablo J J 2000 Macromolecules 33 6439
[20] Keddie J L, Jones A L and Cory R A 1994 Europhys. Lett. 27 59
[21] Alcoutlabi M and McKenna G B 2005 J. Phys.: Condens. Mat. 17 R461
[1] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[2] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[3] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[4] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[5] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[6] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[7] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[8] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[9] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[10] Transmembrane transport of multicomponent liposome-nanoparticles into giant vesicles
Hui-Fang Wang(王慧芳), Chun-Rong Li(李春蓉), Min-Na Sun(孙敏娜), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军). Chin. Phys. B, 2022, 31(4): 048703.
[11] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[12] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[13] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[14] Palladium nanoparticles/wool keratin-assisted carbon composite-modified flexible and disposable electrochemical solid-state pH sensor
Wenli Zhang(张文立), Xiaotian Liu(刘笑天), Youhui Lin(林友辉), Liyun Ma(马利芸), Linqing Kong(孔令庆), Guangzong Min(闵光宗), Ronghui Wu(吴荣辉), Sharwari K. Mengane, Likun Yang(杨丽坤), Aniruddha B. Patil, and Xiang Yang Liu(刘向阳). Chin. Phys. B, 2022, 31(2): 028201.
[15] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
No Suggested Reading articles found!