Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 107202    DOI: 10.1088/1674-1056/21/10/107202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spin-polarized transport in graphene nanoribbon superlattices

Yu Xin-Xin (余欣欣), Xie Yue-E (谢月娥), Yang Tao (欧阳滔), Chen Yuan-Ping (陈元平)
Institute of Physics and Laboratory for Quantum Engineering and Micro-Nano Energy Technology, Xiangtan University, Xiangtan 411105, China
Abstract  By the Green's function method, we investigate spin transport properties of a zigzag graphene nanoribbon superlattice (ZGNS) under a ferromagnetic insulator and edge effect. The exchange splitting induced by the ferromagnetic insulator eliminates the spin degeneracy, which leads to spin-polarized transport in structure. Spin-dependent minibands and minigaps are exhibited in the conductance profile near the Fermi energy. The location and width of the miniband are associated with the geometry of the ZGNS. In the optimal structure, the spin-up and spin-down minibands can be separated completely near the Fermi energy. Therefore, a wide, perfect spin polarization with clear stepwise pattern is observed, i.e., the perfect spin-polarized transport can be tuned from spin up to spin down by varying the electron energy.
Keywords:  spintronics      superlattices      zigzag graphene nanoribbons  
Received:  08 March 2012      Revised:  04 May 2012      Accepted manuscript online: 
PACS:  72.80.Vp (Electronic transport in graphene)  
  72.25.-b (Spin polarized transport)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51006086, 11074213, and 51176161), the Open Fund Based on Innovation Platform of Hunan Colleges and Universities, China (Grant No. 09K034), and the Joint Funds of Hunan Provincial Natural Science Foundation, China (Grant No. 10JJ9001).
Corresponding Authors:  Chen Yuan-Ping     E-mail:  chenyp@xtu.edu.cn

Cite this article: 

Yu Xin-Xin (余欣欣), Xie Yue-E (谢月娥), Yang Tao (欧阳滔), Chen Yuan-Ping (陈元平) Spin-polarized transport in graphene nanoribbon superlattices 2012 Chin. Phys. B 21 107202

[1] Li X, Wang H, Zhang L, Lee S and Dai H 2008 Science 319 1229
[2] Wang X, Ouyang Y, Li X, Wang H, Guo J and Dai H 2008 Phys. Rev. Lett. 100 206803
[3] Lin X, Wang H L, Pan H and Xu H Z 2011 Chin. Phys. B 20 047302
[4] Xu X G, Zhang C, Xu G J and Cao J C 2011 Chin. Phys. B 20 027201
[5] Huertas-Hernando D, Guinea F and Brataas A 2006 Phys. Rev. B 74 155426
[6] Min H, Hill J E, Sinitsyn N A, Sahu B R, Kleinman L and MacDonald A H 2006 Phys. Rev. B 74 165310
[7] Yao Y, Ye F, Qi X L, Zhang S C and Fang Z 2007 Phys. Rev. B 75 041401
[8] Tombros N, Jozsa C, Popinciuc M, Jonkman H T and Wees B J 2007 Nature 448 571
[9] Kobayashi Y, Fukui K, Enoki T, Kusakabe K and Kaburagi Y 2005 Phys. Rev. B 71 193406
[10] Niimi Y, Matsui T, Kambara H, Tagami K, Tsukada M and Fukuyama H 2006 Phys. Rev. B 73 085421
[11] Wakabayashi K, Fujita M, Ajiki H and Sigrist M 1999 Phys. Rev. B 59 8271
[12] Wimmer M, Adagideli İ, Berber S, Tománek D and Richter K 2008 Phys. Rev. Lett. 100 177207
[13] Kumazaki H and Hirashima D S 2009 J. Phys. Soc. Jpn. 78 094701
[14] Hancock Y, Uppstu A, Saloriutta K, Harju A and Puska M J 2010 Phys. Rev. B 81 245402
[15] Cocchi C, Prezzi D, Calzolari A and Molinari E 2010 J. Chem. Phys. 133 124703
[16] Rigo V A, Martins T B, Silva A J R, Fazzio A and Miwa R H 2009 Phys. Rev. B 79 075435
[17] Guo Y F and Guo W L 2012 J. Appl. Phys. 111 074317
[18] Zhang Z H, Chen C F and Guo W L 2009 Phys. Rev. Lett. 103 187204
[19] Guo Y F, Guo W L and Chen C F 2010 J. Phys. Chem. C 114 13098
[20] Son Y W, Cohen M L and Louie S G 2006 Nature 444 347
[21] Kan E J, Li Z, Yang J and Hou J G 2007 Appl. Phys. Lett. 91 243116
[22] Niu Z P, Li F X, Wang B G, Sheng L and Xing D Y 2008 Eur. Phys. J. B 66 245
[23] Zhang Z L, Chen Y P, Xie Y E, Zhang M and Zhong J X 2011 J. Phys. D: Appl. Phys. 44 215403
[24] Ke Q R, Lü H F, Chen X D and Zu X T 2011 Solid State Commun. 151 1131
[25] Haugen H, Huertas-Hernando D and Brataas A 2008 Phys. Rev. B 77 115406
[26] Huard B, Sulpizio J A, Stander N, Todd K, Yang B and Goldhaber-Gordon D 2007 Phys. Rev. Lett. 98 236803
[27] Zhao H, Zhang X W, Cai T, Sang T, Liu X C and Liu F 2012 Chin. Phys. B 21 017305
[28] Tian H Y and Wang J 2012 Chin. Phys. B 21 017203
[29] Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803
[30] Sun L, Li Q X, Ren H, Su H B, Shi Q W and Yang J L 2008 J. Chem. Phys. 129 074704
[31] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[32] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[33] Ci L, Song L, Jariwala D, ElÃ-as A L, Gao W, Terrones M and Ajayan P M 2009 Adv. Mater. 21 4487
[34] Nguyen V H, Nam Do V, Bournel A, Nguyen V L and Dollfus P 2009 J. Appl. Phys. 106 053710
[35] Sun Q F and Xie X C 2010 Phys. Rev. Lett. 104 066805
[36] Chen Y P, Xie Y E, Sun L Z and Zhong J X 2008 Appl. Phys. Lett. 93 092104
[37] Chen Y P, Xie Y E and Yan X H 2008 J. Appl. Phys. 103 063711
[38] Li H, Chen Y P, Xie Y E and Zhong J X 2011 J. Appl. Phys. 110 033701
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[3] Magnetic triangular bubble lattices in bismuth-doped yttrium iron garnet
Tao Lin(蔺涛), Chengxiang Wang(王承祥), Zhiyong Qiu(邱志勇), Chao Chen(陈超), Tao Xing(邢弢), Lu Sun(孙璐), Jianhui Liang(梁建辉), Yizheng Wu(吴义政), Zhong Shi(时钟), and Na Lei(雷娜). Chin. Phys. B, 2023, 32(2): 027505.
[4] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[5] Current spin polarization of a platform molecule with compression effect
Zhi Yang(羊志), Feng Sun(孙峰), Deng-Hui Chen(陈登辉), Zi-Qun Wang(王子群), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2022, 31(7): 077202.
[6] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[7] Magnetoresistance effect in vertical NiFe/graphene/NiFe junctions
Pei-Sen Li(李裴森), Jun-Ping Peng(彭俊平), Yue-Guo Hu(胡悦国), Yan-Rui Guo(郭颜瑞), Wei-Cheng Qiu(邱伟成), Rui-Nan Wu(吴瑞楠), Meng-Chun Pan(潘孟春), Jia-Fei Hu(胡佳飞), Di-Xiang Chen(陈棣湘), and Qi Zhang(张琦). Chin. Phys. B, 2022, 31(3): 038502.
[8] Skyrmion transport driven by pure voltage generated strain gradient
Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮). Chin. Phys. B, 2022, 31(11): 117701.
[9] Ultra-low Young's modulus and high super-exchange interactions in monolayer CrN: A promising candidate for flexible spintronic applications
Yang Song(宋洋), Yan-Fang Zhang(张艳芳), Jinbo Pan(潘金波), and Shixuan Du(杜世萱). Chin. Phys. B, 2021, 30(4): 047105.
[10] Extended phase diagram of La1-xCaxMnO3 by interfacial engineering
Kexuan Zhang(张可璇), Lili Qu(屈莉莉), Feng Jin(金锋), Guanyin Gao(高关胤), Enda Hua(华恩达), Zixun Zhang(张子璕), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2021, 30(12): 126802.
[11] Temperature effects of GaAs/Al0.45Ga0.55As superlattices on chaotic oscillation
Xiao-Peng Luo(罗晓朋), Yan-Fei Liu(刘延飞), Dong-Dong Yang(杨东东), Cheng Chen(陈诚), Xiu-Jian Li(李修建), and Jie-Pan Ying(应杰攀). Chin. Phys. B, 2021, 30(10): 106805.
[12] Electric gating of the multichannel conduction in LaAlO3/SrTiO3 superlattices
Shao-Jin Qi(齐少锦), Xuan Sun(孙璇), Xi Yan(严曦), Hui Zhang(张慧), Hong-Rui Zhang(张洪瑞), Jin-E Zhang(张金娥), Hai-Lin Huang(黄海林), Fu-Rong Han(韩福荣), Jing-Hua Song(宋京华), Bao-Gen Shen(沈保根), and Yuan-Sha Chen(陈沅沙). Chin. Phys. B, 2021, 30(1): 017301.
[13] Exploring ferromagnetic half-metallic nature of Cs2NpBr6 via spin polarized density functional theory
Malak Azmat Ali, G Murtaza, A Laref. Chin. Phys. B, 2020, 29(6): 066102.
[14] Tunable metal-insulator transition in LaTiO3/CaVO3 superlattices: A theoretical study
Ya-Kui Weng(翁亚奎), Meng-Lan Shen(沈梦兰), Jie Li(李杰), and Xing-Ao Li(李兴鳌). Chin. Phys. B, 2020, 29(12): 127303.
[15] Tunneling magnetoresistance in ferromagnet/organic-ferromagnet/metal junctions
Yan-Qi Li(李彦琪), Hong-Jun Kan(阚洪君), Yuan-Yuan Miao(苗圆圆), Lei Yang(杨磊), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), Gui-Chao Hu(胡贵超). Chin. Phys. B, 2020, 29(1): 017303.
No Suggested Reading articles found!