CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Spin-polarized transport in graphene nanoribbon superlattices |
Yu Xin-Xin (余欣欣), Xie Yue-E (谢月娥), Yang Tao (欧阳滔), Chen Yuan-Ping (陈元平) |
Institute of Physics and Laboratory for Quantum Engineering and Micro-Nano Energy Technology, Xiangtan University, Xiangtan 411105, China |
|
|
Abstract By the Green's function method, we investigate spin transport properties of a zigzag graphene nanoribbon superlattice (ZGNS) under a ferromagnetic insulator and edge effect. The exchange splitting induced by the ferromagnetic insulator eliminates the spin degeneracy, which leads to spin-polarized transport in structure. Spin-dependent minibands and minigaps are exhibited in the conductance profile near the Fermi energy. The location and width of the miniband are associated with the geometry of the ZGNS. In the optimal structure, the spin-up and spin-down minibands can be separated completely near the Fermi energy. Therefore, a wide, perfect spin polarization with clear stepwise pattern is observed, i.e., the perfect spin-polarized transport can be tuned from spin up to spin down by varying the electron energy.
|
Received: 08 March 2012
Revised: 04 May 2012
Accepted manuscript online:
|
PACS:
|
72.80.Vp
|
(Electronic transport in graphene)
|
|
72.25.-b
|
(Spin polarized transport)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51006086, 11074213, and 51176161), the Open Fund Based on Innovation Platform of Hunan Colleges and Universities, China (Grant No. 09K034), and the Joint Funds of Hunan Provincial Natural Science Foundation, China (Grant No. 10JJ9001). |
Corresponding Authors:
Chen Yuan-Ping
E-mail: chenyp@xtu.edu.cn
|
Cite this article:
Yu Xin-Xin (余欣欣), Xie Yue-E (谢月娥), Yang Tao (欧阳滔), Chen Yuan-Ping (陈元平) Spin-polarized transport in graphene nanoribbon superlattices 2012 Chin. Phys. B 21 107202
|
[1] |
Li X, Wang H, Zhang L, Lee S and Dai H 2008 Science 319 1229
|
[2] |
Wang X, Ouyang Y, Li X, Wang H, Guo J and Dai H 2008 Phys. Rev. Lett. 100 206803
|
[3] |
Lin X, Wang H L, Pan H and Xu H Z 2011 Chin. Phys. B 20 047302
|
[4] |
Xu X G, Zhang C, Xu G J and Cao J C 2011 Chin. Phys. B 20 027201
|
[5] |
Huertas-Hernando D, Guinea F and Brataas A 2006 Phys. Rev. B 74 155426
|
[6] |
Min H, Hill J E, Sinitsyn N A, Sahu B R, Kleinman L and MacDonald A H 2006 Phys. Rev. B 74 165310
|
[7] |
Yao Y, Ye F, Qi X L, Zhang S C and Fang Z 2007 Phys. Rev. B 75 041401
|
[8] |
Tombros N, Jozsa C, Popinciuc M, Jonkman H T and Wees B J 2007 Nature 448 571
|
[9] |
Kobayashi Y, Fukui K, Enoki T, Kusakabe K and Kaburagi Y 2005 Phys. Rev. B 71 193406
|
[10] |
Niimi Y, Matsui T, Kambara H, Tagami K, Tsukada M and Fukuyama H 2006 Phys. Rev. B 73 085421
|
[11] |
Wakabayashi K, Fujita M, Ajiki H and Sigrist M 1999 Phys. Rev. B 59 8271
|
[12] |
Wimmer M, Adagideli İ, Berber S, Tománek D and Richter K 2008 Phys. Rev. Lett. 100 177207
|
[13] |
Kumazaki H and Hirashima D S 2009 J. Phys. Soc. Jpn. 78 094701
|
[14] |
Hancock Y, Uppstu A, Saloriutta K, Harju A and Puska M J 2010 Phys. Rev. B 81 245402
|
[15] |
Cocchi C, Prezzi D, Calzolari A and Molinari E 2010 J. Chem. Phys. 133 124703
|
[16] |
Rigo V A, Martins T B, Silva A J R, Fazzio A and Miwa R H 2009 Phys. Rev. B 79 075435
|
[17] |
Guo Y F and Guo W L 2012 J. Appl. Phys. 111 074317
|
[18] |
Zhang Z H, Chen C F and Guo W L 2009 Phys. Rev. Lett. 103 187204
|
[19] |
Guo Y F, Guo W L and Chen C F 2010 J. Phys. Chem. C 114 13098
|
[20] |
Son Y W, Cohen M L and Louie S G 2006 Nature 444 347
|
[21] |
Kan E J, Li Z, Yang J and Hou J G 2007 Appl. Phys. Lett. 91 243116
|
[22] |
Niu Z P, Li F X, Wang B G, Sheng L and Xing D Y 2008 Eur. Phys. J. B 66 245
|
[23] |
Zhang Z L, Chen Y P, Xie Y E, Zhang M and Zhong J X 2011 J. Phys. D: Appl. Phys. 44 215403
|
[24] |
Ke Q R, Lü H F, Chen X D and Zu X T 2011 Solid State Commun. 151 1131
|
[25] |
Haugen H, Huertas-Hernando D and Brataas A 2008 Phys. Rev. B 77 115406
|
[26] |
Huard B, Sulpizio J A, Stander N, Todd K, Yang B and Goldhaber-Gordon D 2007 Phys. Rev. Lett. 98 236803
|
[27] |
Zhao H, Zhang X W, Cai T, Sang T, Liu X C and Liu F 2012 Chin. Phys. B 21 017305
|
[28] |
Tian H Y and Wang J 2012 Chin. Phys. B 21 017203
|
[29] |
Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803
|
[30] |
Sun L, Li Q X, Ren H, Su H B, Shi Q W and Yang J L 2008 J. Chem. Phys. 129 074704
|
[31] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[32] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
|
[33] |
Ci L, Song L, Jariwala D, ElÃ-as A L, Gao W, Terrones M and Ajayan P M 2009 Adv. Mater. 21 4487
|
[34] |
Nguyen V H, Nam Do V, Bournel A, Nguyen V L and Dollfus P 2009 J. Appl. Phys. 106 053710
|
[35] |
Sun Q F and Xie X C 2010 Phys. Rev. Lett. 104 066805
|
[36] |
Chen Y P, Xie Y E, Sun L Z and Zhong J X 2008 Appl. Phys. Lett. 93 092104
|
[37] |
Chen Y P, Xie Y E and Yan X H 2008 J. Appl. Phys. 103 063711
|
[38] |
Li H, Chen Y P, Xie Y E and Zhong J X 2011 J. Appl. Phys. 110 033701
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|