CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Tunneling magnetoresistance in ferromagnet/organic-ferromagnet/metal junctions |
Yan-Qi Li(李彦琪), Hong-Jun Kan(阚洪君), Yuan-Yuan Miao(苗圆圆), Lei Yang(杨磊), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), Gui-Chao Hu(胡贵超) |
Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250100, China |
|
|
Abstract Spin-dependent transport in ferromagnet/organic-ferromagnet/metal junctions is investigated theoretically. The results reveal a large tunneling magnetoresistance up to 3230% by controlling the relative magnetization orientation between the ferromagnet and the central organic ferromagnet. The mechanism is explained by distinct efficient spin-resolved tunneling states in the ferromagnet between the parallel and antiparallel spin configurations. The key role of the organic ferromagnet in generating the large magnetoresistance is explored, where the spin selection effect is found to enlarge the difference of the tunneling states between the parallel and antiparallel configurations by comparing with the conventional organic spin valves. The effects of intrinsic interactions in the organic ferromagnet including electron-lattice interaction and spin coupling with radicals on the magnetoresistance are discussed. This work demonstrates a promising potential of organic ferromagnets in the design of high-performance organic spin valves.
|
Received: 03 October 2019
Revised: 13 November 2019
Accepted manuscript online:
|
PACS:
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974215, 11704230, 11674197, and 11874242), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019MA043), and the Taishan Scholar Project of Shandong Province, China. |
Corresponding Authors:
Gui-Chao Hu
E-mail: hgc@sdnu.edu.cn
|
Cite this article:
Yan-Qi Li(李彦琪), Hong-Jun Kan(阚洪君), Yuan-Yuan Miao(苗圆圆), Lei Yang(杨磊), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), Gui-Chao Hu(胡贵超) Tunneling magnetoresistance in ferromagnet/organic-ferromagnet/metal junctions 2020 Chin. Phys. B 29 017303
|
[1] |
Dieny B, Speriosu V S, Parkin S S P, Gurney B A, Wilhoit D R and Mauri D 1991 Phys. Rev. B 43 1297
|
[2] |
Park B G, Wunderlich J, Martí X, Holý V, Kurosaki Y, Yamada M, Yamamoto H, Nishide A, Hayakawa J, Takahashi H, Shick A B and Jungwirth T 2011 Nat. Mater. 10 347
|
[3] |
Cai K M, Yang M Y, Ju H L, Wang S M, Ji Y, Li B H, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H Z and Wang K Y 2017 Nat. Mater. 16 712
|
[4] |
Sheng Y, Edmonds K W, Ma X Q, Zheng H Z and Wang K Y 2018 Adv. Electron. Mater. 4 1800224
|
[5] |
Cao Y, Rushforth A W, Sheng Y, Zheng H Z and Wang K Y 2019 Adv. Funct. Mater. 29 1808104
|
[6] |
Xiong Z H, Wu D, Vardeny Z V and Shi J 2004 Nature 427 821
|
[7] |
Schoonus J J H M, Lumens P G E, Wagemans W, Kohlhepp J T, Bobbert P A, Swagten H J M and Koopmans B 2009 Phys. Rev. Lett. 103 146601
|
[8] |
Santos T S, Lee J S, Migdal P, Lekshmi I C, Satpati B and Moodera J S 2007 Phys. Rev. Lett. 98 016601
|
[9] |
Sun D, Yin L, Sun C, Guo H, Gai Z, Zhang X G, Ward T Z, Cheng Z and Shen J 2010 Phys. Rev. Lett. 104 236602
|
[10] |
Devkota J, Geng R, Subedi R C and Nguyen T D 2016 Adv. Funct. Mater. 26 3881
|
[11] |
Liu R, Bi J J, Xie Z, Yin K K, Wang D Y, Zhang G P, Xiang D, Wang C K and Li Z L 2018 Phys. Rev. Appl. 9 054023
|
[12] |
Li Z L, Sun F, Bi J J, Liu R, Suo Y Q, Fu H Y, Zhang G P, Song Y Z, Wang D Y and Wang C K 2019 Physica E 106 270
|
[13] |
Sun F, Liu R, Suo Y Q, Niu L L, Fu H Y, Ji W F and Li Z L 2019 Acta. Phys. Sin. 68 178502 (in Chinese)
|
[14] |
Pramanik S, Stefanita C G, Patibandla S, Bandyopadhyay S, Garre K, Harth N and Cahay M 2007 Nat. Nanotechnol. 2 216
|
[15] |
Sanvito S 2010 Nat. Phys. 6 562
|
[16] |
Dediu V A, Hueso L E, Bergenti I and Taliani C 2009 Nat. Mater. 8 707
|
[17] |
Barraud C, Seneor P, Mattana R, Fusil S, Bouzehouane K, Deranlot C, Graziosi P, Hueso L, Bergenti I, Dediu V, Petroff F and Fert A 2010 Nat. Phys. 6 615
|
[18] |
Yue F J, Shi Y J, Chen B B, Ding H F, Zhang F M and Wu D 2012 Appl. Phys. Lett. 101 022416
|
[19] |
Yu C J, Miao Y Y, Qiu S, Cui Y J, He G M, Zhang G P, Wang C K and Hu G C 2018 J. Phys. D: Appl. Phys. 51 345302
|
[20] |
Yoo J W, Edelstein R S, Lincoln D M, Raju N P, Xia C, Pokhodnya K I, Miller J S and Epstein A J 2006 Phys. Rev. Lett. 97 247205
|
[21] |
Fang Z, Liu Z L and Yao K L 1994 Phys. Rev. B 49 3916
|
[22] |
Fang Z, Liu Z L, Yao K L and Li Z G 1995 Phys. Rev. B 51 1304
|
[23] |
Yoo J W, Chen C Y, Jang H W, Bark C W, Prigodin V N, Eom C B and Epstein A J 2010 Nat. Mater. 9 638
|
[24] |
Li B, Zhou M Q, Lu Y, Kao C Y, Yoo J W, Prigodin V N and Epstein A J 2012 Org. Electron. 13 1261
|
[25] |
Hayakawa R, Karimi M A, Wolf J, Huhn T, Zöllner M S, Herrmann C and Scheer E 2016 Nano Lett. 16 4960
|
[26] |
Hu G C, Guo Y, Wei J H and Xie S J 2007 Phys. Rev. B 75 165321
|
[27] |
Wang W Z 2006 Phys. Rev. B 73 235325
|
[28] |
Hu G C, Zhang Z, Zhang G P, Ren J F and Wang C K 2016 Org. Electron. 37 485
|
[29] |
Hu G C, Zuo M Y, Li Y, Ren J F and Xie S J 2014 Appl. Phys. Lett. 104 033302
|
[30] |
Ovchinnikov A A and Spector V N 1988 Synth. Met. 27 615
|
[31] |
Alberola A and Pilkington M 2009 Curr. Org. Synth. 6 66
|
[32] |
Su W P, Schrieffer J R and Heeger A J 1979 Phys. Rev. Lett. 42 1698
|
[33] |
Shuai Z, Pati S K, Su W P, Brédas J L and Ramasesha S 1997 Phys. Rev. B 55 15368
|
[34] |
Xie S J, Ahn K H, Smith D L, Bishop A R and Saxena A 2003 Phys. Rev. B 67 125202
|
[35] |
Mujica V, Roitberg A E and Ratner M 2000 J. Chem. Phys. 112 6834
|
[36] |
Datta S 1995 Electronic Transport in Mesoscopic Systems (New York: Oxford University Press) p. 92
|
[37] |
Miao Y Y, Qiu S, Zhang G P, Ren J F, Wang C K and Hu G C 2018 Org. Electron. 55 133
|
[38] |
Miao Y Y, Qiu S, Zhang G P, Ren J F, Wang C K and Hu G C 2018 Phys. Rev. B 98 235415
|
[39] |
Aschcroft N W and Mermin N D 1976 Solid State Physics (Philadelphia: Saunders College) p. 290
|
[40] |
Cao Y, Wang P, Hu Z Y, Li S Z, Zhang L Y and Zhao J G 1988 Synth. Met. 27 625
|
[41] |
Botton G A, Guo G Y, Temmerman W M and Humphreys C J 1996 Phys. Rev. B 54 1682
|
[42] |
He G M, Qiu S, Cui Y J, Yu C J, Miao Y Y, Zhang G P, Ren J F, Wang C K and Hu G C 2019 J. Mater. Sci. 54 5551
|
[43] |
Park C H, Lee B C and Lee J I 2005 J. Korean. Phys. Soc. 47 655
|
[44] |
Wang F J, Xiong Z H, Wu D, Shi J and Vardeny Z V 2005 Synth. Met. 155 172
|
[45] |
Liu Y Y, Li B L, Chen S Z, Jiang X W and Chen K Q 2017 Appl. Phys. Lett. 111 133107
|
[46] |
Li B L and Chen K Q 2016 J. Phys.: Condens. Matter 29 075301
|
[47] |
Wei J H, Xie S J, Mei L M, Berakdar J and Yan Y J 2007 Org. Electron. 8 487
|
[48] |
Zeng J and Chen K Q 2014 Appl. Phys. Lett. 104 033104
|
[49] |
Wu D, Cao X H, Chen S Z, Tang L M, Feng Y X, Chen K Q and Zhou W X 2019 J. Mater. Chem. A 7 19037
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|