Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 016105    DOI: 10.1088/1674-1056/21/1/016105
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Interaction between impurity nitrogen and tungsten: a first-principles investigation

Liu Yue-Lin(刘悦林)a)†, Jin Shuo(金硕)b), and Zhang Ying(张颖)b)
a Department of Physics, Yantai University, Yantai 264005, China; b Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
Abstract  We investigate the stability, diffusion, and impurity concentration of nitrogen in intrinsic tungsten single crystal employing a first-principles method, and find that a single nitrogen atom is energetically favourable for sitting at the octahedral interstitial site. A nitrogen atom prefers to diffuse between the two nearest neighboring octahedral interstitial sites with a diffusion barrier of 0.72 eV. The diffusion coefficient is determined as a function of temperature and expressed as D(N)=1.66×10-7exp (-0.72/kT). The solubility of nitrogen is estimated in intrinsic tungsten in terms of Sieverts' law. The concentration of the nitrogen impurity is found to be 4.82×10-16 Å-3 at a temperature of 600 K and a pressure of 1 Pa. A single nitrogen atom can easily sit in an off-vacancy-centre position close to the octahedral interstitial site. There exists a strong attraction between nitrogen and a vacancy with a large binding energy of 1.40 eV. We believe that these results can provide a good reference for the understanding of the behaviour of nitrogen in intrinsic tungsten.
Keywords:  tungsten      nitrogen      diffusion       first-principles  
Received:  05 May 2011      Revised:  21 July 2011      Accepted manuscript online: 
PACS:  61.82.Bg (Metals and alloys)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  66.30.J- (Diffusion of impurities ?)  
  64.75.Bc (Solubility)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50871009 and 51101135) and the National Magnetic Confinement Fusion Program, China (Grant No. 2009GB106003).

Cite this article: 

Liu Yue-Lin(刘悦林), Jin Shuo(金硕), and Zhang Ying(张颖) Interaction between impurity nitrogen and tungsten: a first-principles investigation 2012 Chin. Phys. B 21 016105

[1] Domain C, Becquart C S and Foct J 2004 Phys. Rev. B 69 144112
[2] Little E A and Harries D R 1970 Met. Sci. J. 4 188
[3] Rubel M, Philipps V, Marot L, Petersson P, Pospieszczyk A and Schweer B 2010 J. Nucl. Mater. 415 5225
[4] Liu Y L, Zhou H B, Jin S, Zhang Y and Lu G H 2010 Chin. Phys. Lett. 27 127101
[5] Wang X L, Xu Y and Zeng Z 2009 Acta Phys. Sin. 58 72 (in Chinese)
[6] Li X C, Shu X, Liu Y N, Gao F and Lu G H 2011 J. Nucl. Mater. 408 12
[7] Little E A 1976 Int. Met. Rev. 204 25
[8] Ruban A V, Baykov V I, Johansson B, Dmitriev V V and Blanter M S 2010 Phys. Rev. B 82 134110
[9] Felton S, Cann B L, Edmonds A M, Liggins S, Cruddace R J, Newton M E, Fisher D and Baker J M 2009 J. Phys.: Condens. Matter 21 364212
[10] Cruz M M, Silva R C, Franco N and Godinho M 2009 J. Phys.: Condens. Matter 21 206002
[11] Yamanaka S, Kashiwara Y, Sugiyama H and Katsura M 1997 J. Nucl. Mater. 247 244
[12] Hautala M, Anttila A and Hirvonen J 1982 J. Nucl. Mater. 105 172
[13] Kainuma T, Iwao N, Suzuki T and Watanabe R 1979 J. Nucl. Mater. 80 339
[14] Filius H A and van Veen A 1987 J. Nucl. Mater. 144 1
[15] Choi D and Kumta P N 2007 J. Am. Ceram. Soc. 90 3113
[16] Toth L E 1971 Transition Metal Carbides and Nitrides (New York: Academic Press) Vol. 7
[17] Jhi S H, Ihm J, Louie S G and Cohen M L 1999 Nature 399 132
[18] Liu F, Qin Z X, Xu F J, Zhao S, Kang X N, Shen B and Zhang G Y 2011 Chin. Phys. B 20 67303
[19] Wang H, Li Q, Li Y, Xu Y, Cui T, Oganov A R and Ma Y 2009 Phys. Rev. B 79 132109
[20] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[21] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[22] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[23] Blochl P E 1994 Phys. Rev. B 50 17953
[24] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[25] Kittel C 1996 Introduction to Solid State Physics (New York: Wiley) 7th ed.
[26] Rosato V 1989 Acta Metall. 37 2759
[27] Williamson G K and Smallmann R E 1953 Acta Crystallogr. 6 361
[28] Puska M J, Nieminen R M and Manninen M 1981 Phys. Rev. B 24 3037
[29] Norskov J K 1982 Phys. Rev. B 26 2875
[30] Liu Y L, Zhang Y, Zhou H B, Liu F, Luo G N and Lu G H 2009 Phys. Rev. B 79 172103
[31] Wert C and Zener C 1949 Phys. Rev. 76 1169
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Giant saturation absorption of tungsten trioxide film prepared based on the seedless layer hydrothermal method
Xiaoguang Ma(马晓光), Fangzhen Hu(胡芳珍), Xi Chen(陈希), Yimeng Wang(王艺盟), Xiaojian Hao(郝晓剑), Min Gu(顾敏), and Qiming Zhang(张启明). Chin. Phys. B, 2023, 32(3): 034212.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] Anomalous diffusion in branched elliptical structure
Kheder Suleiman, Xuelan Zhang(张雪岚), Erhui Wang(王二辉),Shengna Liu(刘圣娜), and Liancun Zheng(郑连存). Chin. Phys. B, 2023, 32(1): 010202.
[11] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[12] Energy levels and magnetic dipole transition parameters for the nitrogen isoelectronic sequence
Mu-Hong Hu(胡木宏), Nan Wang(王楠), Pin-Jun Ouyang(欧阳品均),Xin-Jie Feng(冯新杰), Yang Yang(杨扬), and Chen-Sheng Wu(武晨晟). Chin. Phys. B, 2022, 31(9): 093101.
[13] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[14] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[15] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
No Suggested Reading articles found!