Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 015202    DOI: 10.1088/1674-1056/21/1/015202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Bursting behaviours in cascaded stimulated Brillouin scattering

Liu Zhan-Jun(刘占军)a) ^†, He Xian-Tu(贺贤土)a) b), Zheng Chun-Yang(郑春阳)a) b), and Wang Yu-Gang(王宇钢)b)
a Institute of Applied Physics and Computational Mathematics, Beijing 100094, China; b State Key Laboratory of Nuclear Physics and Technology, Center for Applied Physics and Technology, Peking University, Beijing 100871, China
Abstract  Stimulated Brillouin scattering is studied by numerically solving the Vlasov-Maxwell system. A cascade of stimulated Brillouin scattering can occur when a linearly polarized laser pulse propagates in a plasma. It is found that a stimulated Brillouin scattering cascade can reduce the scattering and increase the transmission of light, as well as introduce a bursting behaviour in the evolution of the laser-plasma interaction. The bursting time in the reflectivity is found to be less than half the ion acoustic period. The ion temperature can affect the stimulated Brillouin scattering cascade, which can repeat several ×at low ion temperatures and can be completely eliminated at high ion temperatures. For stimulated Brillouin scattering saturation, higher-harmonic generation and wave-wave interaction of the excited ion acoustic waves can restrict the amplitude of the latter. In addition, stimulated Brillouin scattering cascade can restrict the amplitude of the scattered light.
Keywords:  bursting behaviour      stimulated Brillouin scattering      cascade  
Received:  11 June 2011      Revised:  14 July 2011      Accepted manuscript online: 
PACS:  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  52.25.Dg (Plasma kinetic equations)  
  52.25.Os (Emission, absorption, and scattering of electromagnetic radiation ?)  
  52.38.Bv (Rayleigh scattering; stimulated Brillouin and Raman scattering)  
Fund: Project supported by the Science and Technology Funds of China Academy of Engineering Physics (Grant Nos. 2010B0102018 and 2010A0102004), the National Basic Research Program of China (Grant No. 2010CB832904), and the National Natural Science Foundation of

Cite this article: 

Liu Zhan-Jun(刘占军), He Xian-Tu(贺贤土), Zheng Chun-Yang(郑春阳), and Wang Yu-Gang(王宇钢) Bursting behaviours in cascaded stimulated Brillouin scattering 2012 Chin. Phys. B 21 015202

[1] Kruer W L 1988 The Physics of Laser Plasma Interactions (New York: Addison-Wesley)
[2] Young P E, Foord M E, Maximov A V and Rozmus W 1996 Phys. Rev. Lett. 77 1278
[3] Glenzer S H, Back C A, Estabrook K G, Wallace R, Baker K, MacGowan B J and Hammel B A 1996 Phys. Rev. Lett. 77 1496
[4] Rambo P W, Wilks S C and Kruer W L 1997 Phys. Rev. Lett. 79 83
[5] Froula D H, Divol L, Offenberger A A, Meezan N, Ao T, Gregori G, Niemann C, Price D, Smith C A and Glenzer S H 2004 Phys. Rev. Lett. 93 035001
[6] Froula D H, Divol L and Glenzer S H 2002 Phys. Rev. Lett. 88 105003
[7] Bandulet H C, Labaune C, Lewis K and Depierreux S 2004 Phys. Rev. Lett. 93 035002
[8] Berger R L and Valeo E J 2005 Phys. Plasmas 12 032104
[9] Bychenkov V Y, Rozmus W and Tikhonchuk V T 2005 Phys. Rev. E 51 1400
[10] Liu Z J, Zheng J and Yu C X 2002 Phys. Plasmas 9 1073
[11] Cohen B I, Williams E A, Berger R L, Pesme D and Riconda C 2009 Phys. Plasmas 16 032701
[12] Liu Z J, He X T, Zheng C Y and Wang Y G 2009 Phys. Plasmas 16 093108
[13] Liu Z J, Zhu S P, Cao L H, Zheng C Y, He X T and Wang Y G 2009 Phys. Plasmas 16 112703
[14] Liu Z J, He X T, Zheng C Y, Zhu S P, Cao L H and Wang Y G 2010 Phys. Plasmas 17 024502
[15] Giacone R E and Vu H X 1998 Phys. Plasmas 5 1445 growthrate1Drake J F, Kaw P K, Lee Y C, Schmidt G, Liu C S and Rosenbluth M N 1974 Phys. Fluids 17 778 growthrateVu H X, Wallace J M and Bezzerides B 1995 Phys. Plasmas 2 1682 Hinkle Hinkel D E, Williams E A and Berger R L 1994 Phys. Plasmas 1 2987 RandallRandall C J and Albritton J R 1984 Phys. Rev. Lett. 52 1887 BychenkovBychenkov V Y, Rozmus W, Brantov A V and Tikhonchuk V T 2000 Phys. Plasmas 7 1511 rescatter Speziale T, McGrath J F and Berger R L 1980 Phys. Fluids 23 1275
[16] Estabrook K, Kruer W L, Haines M G 1989 Phys. Fluids B 1 1282
[17] Cohen B I, Lasinski B F, Langdon A B and Williams E A 1997 Phys. Plasmas 4 956
[1] Anti-symmetric sampled grating quantum cascade laser for mode selection
Qiangqiang Guo(郭强强), Jinchuan Zhang(张锦川), Fengmin Cheng(程凤敏), Ning Zhuo(卓宁), Shenqiang Zhai(翟慎强), Junqi Liu(刘俊岐), Lijun Wang(王利军),Shuman Liu(刘舒曼), and Fengqi Liu(刘峰奇). Chin. Phys. B, 2023, 32(3): 034209.
[2] THz wave generation by repeated and continuous frequency conversions from pump wave to high-order Stokes waves
Zhongyang Li(李忠洋), Qianze Yan(颜钤泽), Pengxiang Liu(刘鹏翔), Binzhe Jiao(焦彬哲), Gege Zhang(张格格), Zhiliang Chen(陈治良), Pibin Bing(邴丕彬), Sheng Yuan(袁胜), Kai Zhong(钟凯), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(7): 074209.
[3] A nonlinear wave coupling algorithm and its programing and application in plasma turbulences
Yong Shen(沈勇), Yu-Hang Shen(沈煜航), Jia-Qi Dong(董家齐), Kai-Jun Zhao(赵开君), Zhong-Bing Shi(石中兵), and Ji-Quan Li(李继全). Chin. Phys. B, 2022, 31(6): 065206.
[4] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[5] Ultra-broadband absorber based on cascaded nanodisk arrays
Qi Wang(王琦), Rui Li(李瑞), Xu-Feng Gao(高旭峰), Shi-Jie Zhang(张世杰), Rui-Jin Hong(洪瑞金), Bang-Lian Xu(徐邦联), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2022, 31(4): 040203.
[6] A novel hyperchaotic map with sine chaotification and discrete memristor
Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). Chin. Phys. B, 2022, 31(12): 120501.
[7] Experimental demonstration of a fast calibration method for integrated photonic circuits with cascaded phase shifters
Junqin Cao(曹君勤), Zhixin Chen(陈志歆), Yaxin Wang(王亚新), Tianfeng Feng(冯田峰), Zhihao Li(李志浩), Zeyu Xing(邢泽宇), Huashan Li(李华山), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2022, 31(11): 114204.
[8] Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers
Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2022, 31(10): 100505.
[9] Cascading failures of overload behaviors using a new coupled network model between edges
Yu-Wei Yan(严玉为), Yuan Jiang(蒋沅), Rong-Bin Yu(余荣斌), Song-Qing Yang(杨松青), and Cheng Hong(洪成). Chin. Phys. B, 2022, 31(1): 018901.
[10] GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers
Yi Zhang(张一), Cheng-Ao Yang(杨成奥), Jin-Ming Shang(尚金铭), Yi-Hang Chen(陈益航), Tian-Fang Wang(王天放), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Bing Liu(刘冰), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2021, 30(9): 094204.
[11] Distributed analysis of forward stimulated Brillouin scattering for acoustic impedance sensing by extraction of a 2nd-order local spectrum
Yu-Lian Yang(杨玉莲), Jia-Bing Lin(林佳兵), Li-Ming Liu(刘黎明), Xin-Hong Jia(贾新鸿), Wen-Yan Liang(梁文燕), Shi-Rong Xu(许世蓉), and Li Jiang(姜利). Chin. Phys. B, 2021, 30(8): 084205.
[12] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[13] High-efficiency terahertz wave generation with multiple frequencies by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Binzhe Jiao(焦彬哲), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Gege Zhang(张格格), Qianze Yan(颜钤泽), Pibin Bing(邴丕彬), Fengrui Zhang(张风蕊), Zhan Wang(王湛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(4): 044211.
[14] Theoretical analysis and experimental validation of radial cascaded composite ultrasonic transducer
Xiao-Yu Wang(王晓宇), Zhi-Xin Yu(余芷欣), Jing Hu(胡静), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2021, 30(4): 040701.
[15] Beam steering characteristics in high-power quantum-cascade lasers emitting at 4.6 μ m
Yong-Qiang Sun(孙永强), Jin-Chuan Zhang(张锦川), Feng-Min Cheng(程凤敏), Chao Ning(宁超), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Feng-Qi Liu(刘峰奇), Jun-Qi Liu(刘俊岐), Shu-Man Liu(刘舒曼), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(3): 034211.
No Suggested Reading articles found!