Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 084205    DOI: 10.1088/1674-1056/abfcce
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Distributed analysis of forward stimulated Brillouin scattering for acoustic impedance sensing by extraction of a 2nd-order local spectrum

Yu-Lian Yang(杨玉莲), Jia-Bing Lin(林佳兵), Li-Ming Liu(刘黎明), Xin-Hong Jia(贾新鸿), Wen-Yan Liang(梁文燕), Shi-Rong Xu(许世蓉), and Li Jiang(姜利)
College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610101, China
Abstract  Distributed fiber sensors based on forward stimulated Brillouin scattering (F-SBS) have attracted special attention because of their capability to detect the acoustic impedance of liquid material outside fiber. However, the reported results were based on the extraction of a 1st-order local spectrum, causing the sensing distance to be restricted by pump depletion. Here, a novel post-processing technique was proposed for distributed acoustic impedance sensing by extracting the 2nd-order local spectrum, which is beneficial for improving the sensing signal-to-noise ratio (SNR) significantly, since its pulse energy penetrates into the fiber more deeply. As a proof-of-concept, distributed acoustic impedance sensing along ~1630 m fiber under moderate spatial resolution of ~20 m was demonstrated.
Keywords:  distributed acoustic impedance sensing      forward stimulated Brillouin scattering (F-SBS)      2nd-order local spectrum  
Received:  08 March 2021      Revised:  22 April 2021      Accepted manuscript online:  29 April 2021
PACS:  42.81.-i (Fiber optics)  
  42.81.Pa (Sensors, gyros)  
  78.35.+c (Brillouin and Rayleigh scattering; other light scattering)  
Fund: Project supported by the Sichuan Science and Technology Program (Grant No. 2019YJ0530), Scientific Research Fund of Sichuan Provincial Education Department, China (Grant No. 18ZA0401), and the National Natural Science Foundation of China (Grant No. 61205079).
Corresponding Authors:  Xin-Hong Jia     E-mail:  jiaxh_0@126.com

Cite this article: 

Yu-Lian Yang(杨玉莲), Jia-Bing Lin(林佳兵), Li-Ming Liu(刘黎明), Xin-Hong Jia(贾新鸿), Wen-Yan Liang(梁文燕), Shi-Rong Xu(许世蓉), and Li Jiang(姜利) Distributed analysis of forward stimulated Brillouin scattering for acoustic impedance sensing by extraction of a 2nd-order local spectrum 2021 Chin. Phys. B 30 084205

[1] Wang S H, Ren L Y and Liu Y 2009 Acta Phys. Sin. 58 3943 (in Chinese)
[2] Zhang Y C, Chen W, Sun S L and Meng Z 2015 Chin. Phys. B 24 094209
[3] Mu K L, Shang J M, Tang L H, Wang Z K, Yu S and Qiao Y J 2019 Chin. Phys. B 28 094216
[4] Wang G, Xu L X and Gu C 2018 Chin. Phys. Lett. 35 084201
[5] Shelby R M, Levenson M D and Bayer P W 1985 Phys. Rev. B. 31 5244
[6] Townsend P D, Poustie A J, Hardman P J and Blow K J 1996 Opt. Lett. 21 333
[7] Biryukov A S, Sukharev M E and Dianov E M 2002 Quantum Electron. 32 765
[8] Quang D L, Jaouën Y, Zimmerli M, Gallion P and Thomine J B 1996 IEEE Photon. Technol. Lett. 8 414
[9] Russell P St J, Culverhouse D and Farahi F 1990 Electron. Lett. 26 1195
[10] Russell P St J, Culverhouse D and Farahi F 1991 IEEE J. Quantum Electron. 27 836
[11] Matsui T, Nakajima K and Yamamoto F 2015 Appl. Opt. 54 6093
[12] Nishizawa N, Kume S, Mori M and Goto T 1995 J. Opt. Soc. Am. B. 12 1651
[13] Kang M S, Brenn A, Wiederhecker G S and Russell P St J 2008 Appl. Phys. Lett. 93 131110
[14] Koehler J R, Butsch A, Euser T G, Noskov R E and Russell P St J 2013 Appl. Phys. Lett. 103 221107
[15] Butsch A, Koehler J R, Noskov R E and Russell P St J 2014 Optica 1 158
[16] Koehler J R, Noskov R E, Sukhorukov A A, Butsch A, Novoa D and Russell P St J 2016 APL Photonics 1 056101
[17] Wiederhecker G S, Brenn A, Fragnito H L and Russell P St J 2008 Phys. Rev. Lett. 100 203903
[18] Dainese P, Russell P St J, Joly N, Knight J C, Wiederhecker G S, Fragnito H L, Laude V and Khelif A 2006 Nat. Phys. 2 388
[19] Dainese P, Russell P St J, Wiederhecker G S, Joly N, Fragnito H L, Laude V and Khelif A 2006 Opt. Express. 14 4141
[20] Brenn A, Wiederhecker G S, Kang M S, Hundertmark H, Joly N and Russell P St J 2009 J. Opt. Soc. Am. B. 26 1641
[21] Beugnot J C and Laude V 2012 Phys. Rev. B. 86 224304
[22] Diamandi H H, London Y and Zadok A 2017 Optica 4 289
[23] Diamandi H H, London Y, Bashan G, Bergman A and Zadok A 2018 Sci. Rep. 8 9514
[24] London Y, Diamandi H H and Zadok A 2017 APL Photonics. 2 041303
[25] Antman Y, Clain A, London Y and Zadok A 2016 Optica 3 510
[26] Chow D M, Soto M A and Thévenaz L 2017 25th International Conference on Optical Fibre Sensors 10323 1032311
[27] Hayashi N, Mizuno Y, Nakamura K, Set S Y and Yamashita S 2017 Opt. Express. 25 2239
[28] Chow D M and Thévenaz L 2018 Opt. Lett. 43 5467
[29] Zheng Z, Li Z, Fu X, Wang L and Wang H 2020 Opt. Lett. 45 4523
[30] Bashan G, Diamandi H H, London Y, Preter E and Zadok A 2018 Nat. Commun. 9 2991
[31] Diamandi H H, London Y, Bashan G and Zadok A 2019 APL Photonics 4 016105
[32] Chow D M, Yang Z, Soto M A and Thévenaz L 2018 Nat. Commun. 9 2990
[33] Zaslawski S, Yang Z, Wang S and Thévenaz L 2019 Seventh European Workshop on Optical Fibre Sensors 11199 1119923
[34] Pang C, Hua Z, Zhou D, Zhang H, Chen L, Bao X Y and Dong Y K 2020 Optica 7 176
[35] Zaslawski S, Yang Z and Thévenaz L 2021 Optica 8 388
[36] Shiraki K and Ohashi M 1992 IEEE Photon. Technol. Lett. 4 1177
[37] Ohashi M, Shibata N and Shiraki K 1992 Electron. Lett. 28 900
[38] Tanaka Y and Ogusu K 1998 IEEE Photon. Technol. Lett. 10 1769
[39] Carry E, Beugnot J C, Stiller B, Lee M W, Maillotte H and Sylvestre T 2011 Appl. Opt. 50 6543
[40] Hayashi N, Suzuki K, Set S Y and Yamashita S 2017 Appl. Phys. Express. 10 092501
[41] Tanaka Y and Ogusu K 1999 IEEE Photon. Technol. Lett. 11 865
[42] Lin J B, Jia X H, Xu S R, Ma H L, Wu H and Wei X Y 2019 Appl. Phys. Express. 12 102014
[43] Goldstein M and Thaler R M 1959 Math. Comput. 13 102
[44] Alem M, Soto M A, Tur M and Thévenaz L 2017 25th Optical Fiber Sensors Conference 1
[1] Wavelength switchable mode-locked fiber laser with a few-mode fiber filter
Shaokang Bai(白少康), Yujin Xiang(向昱锦), and Zuxing Zhang(张祖兴). Chin. Phys. B, 2023, 32(2): 024209.
[2] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[3] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[4] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[5] Optical fiber FBG linear sensing systems for the on-line monitoring of airborne high temperature air duct leakage
Qinyu Wang(王沁宇), Xinglin Tong(童杏林), Cui Zhang(张翠), Chengwei Deng(邓承伟), Siyu Xu(许思宇), and Jingchuang Wei(魏敬闯). Chin. Phys. B, 2022, 31(8): 084204.
[6] A radiation-temperature coupling model of the optical fiber attenuation spectrum in the Ge/P co-doped fiber
Yong Li(李勇), Haoshi Zhang(张浩石), Xiaowei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(7): 074211.
[7] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[8] Single-polarization single-mode hollow-core negative curvature fiber with nested U-type cladding elements
Qi-Wei Wang(王启伟), Shi Qiu(邱石), Jin-Hui Yuan(苑金辉), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Yu-Wei Qu(屈玉玮), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Qiang Wu(吴强), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2022, 31(6): 064213.
[9] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[10] Switchable instantaneous frequency measurement by optical power monitoring based on DP-QPSK modulator
Yu-Lin Zhu(朱昱琳), Bei-Lei Wu(武蓓蕾), Jing Li(李晶), Mu-Guang Wang(王目光), Shi-Ying Xiao(肖世莹), and Feng-Ping Yan(延凤平). Chin. Phys. B, 2022, 31(4): 044202.
[11] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[12] Effects of pulse energy ratios on plasma characteristics of dual-pulse fiber-optic laser-induced breakdown spectroscopy
Yu-Hua Hang(杭玉桦), Yan Qiu(邱岩), Ying Zhou(周颖), Tao Liu(刘韬), Bin Zhu(朱斌), Kaixing Liao(廖开星), Ming-Xin Shi(时铭鑫), and Fei Xue(薛飞). Chin. Phys. B, 2022, 31(2): 024212.
[13] Wavelength and sensitivity tunable long period gratings fabricated in fluid-cladding microfibers
Wa Jin(金娃), Linke Zhang(张林克), Xiang Zhang(张祥), Ming Xu(徐铭), Weihong Bi(毕卫红), and Yuefeng Qi(齐跃峰). Chin. Phys. B, 2022, 31(1): 014207.
[14] Single-mode antiresonant terahertz fiber based on mode coupling between core and cladding
Shuai Sun(孙帅), Wei Shi(史伟), Quan Sheng(盛泉), Shijie Fu(付士杰), Zhongbao Yan(闫忠宝), Shuai Zhang(张帅), Junxiang Zhang(张钧翔), Chaodu Shi(史朝督), Guizhong Zhang(张贵忠), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(12): 124205.
[15] Optomechanical-organized multipulse dynamics in ultrafast fiber laser
Lin Huang(黄琳), Yu-Sheng Zhang(张裕生), and Yu-Dong Cui(崔玉栋). Chin. Phys. B, 2021, 30(11): 114203.
No Suggested Reading articles found!