Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 040701    DOI: 10.1088/1674-1056/abd399
GENERAL Prev   Next  

Theoretical analysis and experimental validation of radial cascaded composite ultrasonic transducer

Xiao-Yu Wang(王晓宇), Zhi-Xin Yu(余芷欣), Jing Hu(胡静), and Shu-Yu Lin(林书玉)
1 Shaanxi Key Laboratory of Ultrasonics, Institute of Applied Acoustics, Shaanxi Normal University, Xi'an 710119, China
Abstract  A radial cascaded composite ultrasonic transducer is analyzed. The transducer consists of three short metal tubes and two radially polarized piezoelectric ceramic short tubes arranged alternately along the radial direction. The short metal tubes and the piezoelectric ceramic short tubes are connected in parallel electrically and in series mechanically, which can multiply the input sound power and sound intensity. Based on the theory of plane stress, the electro-mechanical equivalent circuit of radial vibration of the transducer is derived firstly. The resonance/anti-resonance frequency equation and the expression of the effective electromechanical coupling coefficient are obtained. Excellent electromechanical characteristics are determined by changing the radial geometric dimensions. Two prototypes of the transducers are designed and manufactured to support the analytical theory. It is concluded that the theoretical resonance/anti-resonance frequencies are consistent with the numerical and experimental results. When R2 is at certain values, both the anti-resonance frequency and effective electromechanical coupling coefficient corresponding to the second mode have maximal values. The radial cascaded composite ultrasonic transducer is expected to be used in the fields of ultrasonic water treatment and underwater acoustics.
Keywords:  radial cascaded transducer      radial vibration      equivalent circuit      effective electromechanical coupling coefficient  
Received:  14 October 2020      Revised:  09 November 2020      Accepted manuscript online:  15 December 2020
PACS:  07.07.Mp (Transducers)  
  07.05.Tp (Computer modeling and simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674206 and 11874253).
Corresponding Authors:  Corresponding author. E-mail: hjwlx@snnu.edu.cn Corresponding author. E-mail: sylin@snnu.edu.cn   

Cite this article: 

Xiao-Yu Wang(王晓宇), Zhi-Xin Yu(余芷欣), Jing Hu(胡静), and Shu-Yu Lin(林书玉) Theoretical analysis and experimental validation of radial cascaded composite ultrasonic transducer 2021 Chin. Phys. B 30 040701

1 Mazue G, Viennet R, Hihn J Y and Albaina D I 2011 Ultrason. Sonochem. 18 895
2 Guney M and Eskinat E 2007 Smart Mater. Struct. 16 541
3 Yuan X, Li C, Geng H, Zhai S and Xu L 2017 J. Test. Eval. 45 1396
4 Kluk P and Milewski A 2015 Acta Phys. Pol. A 127 719
5 Jia L Y, Zhang G B, Zhang X F, Yao Y and Lin S Y 2017 Ultrasonics 74 204
6 Chen Z Y, Qian X J, Song X, Jiang Q G, Huang R J, Yang Y, Li R Z, Shung K, Chen Y and Zhou Q F 2019 Micromachine 10 1
7 Tamano S, Azuma T, Imoto H, Takagi S, Umemura S I and Matsumoto Y 2015 Jpn. J. Appl. Phys. 54 07
8 Hegde V, Yellampalli S S and Ravikumar H M 2019 Microsyst. Technol. 26 1613
9 Chilibon I2003 Proceedings of the Tenth International Congress on Sound and Vibration Tenth International Congress on Sound & Vibration July 7-10, 2003, Stockholm, Sweden, p. 1035
10 Li X and Yao Z 2016 Smart Mater. Struct. 25 075026
11 Ke Q Q, Liew W H, Zhang L, Tan C K I and Yao Kui 2019 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 67 968
12 Wei X Y, Yang Y, Yao W Q and Zhang L 2017 Sensors 17 2253
13 Mancic D D and Stancic G Z 2010 J. Sandw. Struct. Mater. 12 63
14 Zhou G, Zhang Y and Zhang B 2002 Ultrasonics 40 907
15 Kim T, Cui Z, Chang W Y, Kim H, Zhu Y and Jiang X N 2020 IEEE Trans. Ind. Electron. 67 6955
16 Cannata J M Ritter T A Chen W H Silverman R H and Shung K K 2003 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 50 1548
17 Abdullah A, Shahini M and Pak A 2009 J. Electroceram. 22 369
18 Lin S Y, Fu Z Q, Zhang X L, Wang Y and Hu J 2012 Smart Mater. Struct. 22 015005
19 Lin S Y, Wang S J and Fu Z Q 2012 Sens. Actuator A-Phys. 180 87
20 Xu J and Lin S Y 2019 Sens. Actuator A-Phys. 286 133
21 Xu J and Lin S Y 2019 J. Acoust. Soc. Am. 145 1303
22 Li G, Gong J H, Wang T, Qiu C R and Xu Z 2018 Ceram. Int. 44 S250
23 Choi H 2019 Sens. Actuator A-Phys. 299 1
24 Wang J J and Shi Z F 2016 J. Intell. Mater. Syst. Struct. 27 500
[1] Extrinsic equivalent circuit modeling of InP HEMTs based on full-wave electromagnetic simulation
Shi-Yu Feng(冯识谕), Yong-Bo Su(苏永波), Peng Ding(丁芃), Jing-Tao Zhou(周静涛), Song-Ang Peng(彭松昂), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(4): 047303.
[2] Multi-layer structures including zigzag sculptured thin films for corrosion protection of AISI 304 stainless steel
Fateme Abdi. Chin. Phys. B, 2021, 30(3): 038106.
[3] Improved high-frequency equivalent circuit model based on distributed effects for SiGe HBTs with CBE layout
Ya-Bin Sun(孙亚宾), Xiao-Jin Li(李小进), Jin-Zhong Zhang(张金中), Yan-Ling Shi(石艳玲). Chin. Phys. B, 2017, 26(9): 098502.
[4] An optimized fitting function with least square approximation inInAs/AlSb HFET small-signal model for characterizingthe frequency dependency of impact ionization effect
He Guan(关赫), Hui Guo(郭辉). Chin. Phys. B, 2017, 26(5): 058501.
[5] Lumped modeling with circuit elements for nonreciprocal magnetoelectric tunable band-pass filter
Xiao-Hong Li(李小红), Hao-Miao Zhou(周浩淼), Qiu-shi Zhang(张秋实), Wen-Wen Hu(胡文文). Chin. Phys. B, 2016, 25(11): 117505.
[6] An equivalent circuit model for terahertz quantumcascade lasers: Modeling and experiments
Yao Chen (姚辰), Xu Tian-Hong (徐天鸿), Wan Wen-Jian (万文坚), Zhu Yong-Hao (朱永浩), Cao Jun-Cheng (曹俊诚). Chin. Phys. B, 2015, 24(9): 094208.
[7] Dynamical characteristics of an HP memristor based on an equivalent circuit model in a chaotic oscillator
Yuan Fang (袁方), Wang Guang-Yi (王光义), Wang Xiao-Yuan (王晓媛). Chin. Phys. B, 2015, 24(6): 060506.
[8] Lumped-equivalent circuit model for multi-stage cascaded magnetoelectric dual-tunable bandpass filter
Zhang Qiu-Shi (张秋实), Zhu Feng-Jie (朱锋杰), Zhou Hao-Miao (周浩淼). Chin. Phys. B, 2015, 24(10): 107506.
[9] Efficiency and stability enhancement of a virtual cathode oscillator
Fan Yu-Wei (樊玉伟), Li Zhi-Qiang (李志强), Shu Ting (舒挺), Liu Jing (刘静). Chin. Phys. B, 2014, 23(7): 075208.
[10] Analysis of each branch current of serial solar cells by using an equivalent circuit model
Yi Shi-Guang (易施光), Zhang Wan-Hui (张万辉), Ai Bin (艾斌), Song Jing-Wei (宋经纬), Shen Hui (沈辉). Chin. Phys. B, 2014, 23(2): 028801.
[11] Threshold flux-controlled memristor model and its equivalent circuit implementation
Wu Hua-Gan (武花干), Bao Bo-Cheng (包伯成), Chen Mo (陈墨). Chin. Phys. B, 2014, 23(11): 118401.
[12] The voltage current relationship and equivalent circuit implementation of parallel flux-controlled memristive circuits
Bao Bo-Cheng (包伯成), Feng Fei (冯霏), Dong Wei (董伟), Pan Sai-Hu (潘赛虎). Chin. Phys. B, 2013, 22(6): 068401.
[13] Analysis of frequency selective surface absorbers via a novel equivalent circuit method
Liu Li-Guo (刘立国), Wu Wei-Wei (吴微微), Mo Jin-Jun (莫锦军), Fu Yun-Qi (付云起), Yuan Nai-Chang (袁乃昌). Chin. Phys. B, 2013, 22(4): 047802.
[14] Transfer function modeling and analysis of the open-loop Buck converter using the fractional calculus
Wang Fa-Qiang (王发强), Ma Xi-Kui (马西奎). Chin. Phys. B, 2013, 22(3): 030506.
[15] Chaotic memristive circuit: equivalent circuit realization and dynamical analysis
Bao Bo-Cheng(包伯成), Xu Jian-Ping(许建平), Zhou Guo-Hua(周国华), Ma Zheng-Hua(马正华), and Zou Ling(邹凌) . Chin. Phys. B, 2011, 20(12): 120502.
No Suggested Reading articles found!