Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 015203    DOI: 10.1088/1674-1056/21/1/015203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Influence of ignition condition on the growth of silicon thin films using plasma enhanced chemical vapour deposition

Zhang Hai-Long(张海龙), Liu Feng-Zhen(刘丰珍), Zhu Mei-Fang(朱美芳), and Liu Jin-Long(刘金龙)
Graduate University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  The influences of the plasma ignition condition in plasma enhanced chemical vapour deposition (PECVD) on the interfaces and  the microstructures of hydrogenated microcrystalline Si ($\mu $c-Si:H) thin films are investigated. The plasma ignition condition is  modified by varying the ratio of SiH$_{4}$ to H$_{2}$ ($R_{\rm H})$. For plasma ignited with a constant gas ratio, the time-resolved  optical emission spectroscopy presents a low value of the emission intensity ratio of H$\alpha $ to SiH$^*$ ($I_{\rm H\alpha }$/$I_{\rm  SiH^\ast })$ at the initial stage, which leads to a thick amorphous incubation layer. For the ignition condition with a profiling  $R_{\rm H}$, the higher $I_{\rm H\alpha }$/$I_{\rm SiH^\ast }$ values are realized. By optimizing the $R_{\rm H}$ modulation, a uniform  crystallinity along the growth direction and a denser $\mu $c-Si:H film can be obtained. However, an excessively high $I_{\rm H\alpha  }$/$I_{\rm SiH^\ast }$ may damage the interface properties, which is indicated by capacitance--voltage ($C$--$V)$ measurements. Well  controlling the ignition condition is critically important for the applications of Si thin films.
Keywords:  plasma enhanced chemical vapour deposition      microcrystalline silicon      ignition condition  
Received:  15 July 2011      Revised:  28 July 2011      Accepted manuscript online: 
PACS:  52.80.Pi (High-frequency and RF discharges)  
  68.55.-a (Thin film structure and morphology)  
  68.90.+g (Other topics in structure, and nonelectronic properties of surfaces and interfaces; thin films and low-dimensional structures)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. G2006CB202601 and 2011CBA00705), the National Natural Science Foundation of China (Grant No. 60806020), and the Knowledge Innovation Project of Chinese Academy of Sciences (Gran

Cite this article: 

Zhang Hai-Long(张海龙), Liu Feng-Zhen(刘丰珍), Zhu Mei-Fang(朱美芳), and Liu Jin-Long(刘金龙) Influence of ignition condition on the growth of silicon thin films using plasma enhanced chemical vapour deposition 2012 Chin. Phys. B 21 015203

[1] Shah A V, Meier J, Vallat-Sauvain E, Wyrsch N, Kroll U, Droz C and Graf U 2003 Solar Energy Materials and Solar Cells 78 469
[2] Kalache B, Kosarev A I, Vanderhaghen R and Cabarrocas P R 2002 J. Non-Cryst. Solids 299-302 63
[3] Hrunski D, Grählert W, Beese H, Kilper T, Gordijn A and Appenzeller W 2009 Thin Solid Films 517 4188
[4] Smets A H M, Matsui T and Kondo M 2008 J. Appl. Phys. 104 034508
[5] Yan B J, Yue G Z, Xu X X, Yang J and Guha S 2010 Phys. Status Solidi A 207 671
[6] Gu J H, Zhu M F, Wang L J, Liu F Z, Zhou B Q and Zhou Y Q 2005 J. Appl. Phys. 98 093505
[7] Liu F Z, Li C W, Zhu M F, Gu J H and Zhou Y Q 2010 Phys. Status Solidi C 7 533
[8] Hou G F, Han X Y, Geng X H, Zhang X D, Wei C C, Sun J, Chen X L, Zhang J J and Zhao Y 2010 Phys. Status Solidi C 7 1089
[9] Fantzy U 1998 Plasma Phys. Control. Fusion 40 1035
[10] Kosku N and Miyazaki S 2006Thin Solid Films 511-512 265
[11] Nunomura S, Yoshida I and Kondo M 2009 Appl. Phys. Lett. 94 071502
[12] Smets H M, Matsui T and Kondo M 2008 Appl. Phys. Lett. 92 033506
[13] Li T W 2010 Studies on Gas Phase Process of Hot Wire Chemical Deposition for High Rate Growth of Microcrystalline Silicon Thin Films (M. S.) (Beijing: Graduate University of the Chinese Academy of Sciences) p. 56
[14] Jagannathan B, Anderson W A and Coleman J 1997 Solar Energy Materials and Solar Cells 46 289
[15] Zhang Q F, Zhu M F, Liu F Z and Zhou Y Q 2007 J. Mater. Sci.: Mater. Electron. 18 33
[1] Influence of Boron doping on microcrystalline silicon growth
Li Xin-Li(李新利), Chen Yong-Sheng(陈永生), Yang Shi-E(杨仕娥), Gu Jin-Hua(谷锦华), Lu Jing-Xiao(卢景霄), Gao Xiao-Yong(郜小勇), Li Rui(李瑞), Jiao Yue-Chao(焦岳超), Gao Hai-Bo(高海波), and Wang Guo(王果) . Chin. Phys. B, 2011, 20(9): 096801.
[2] Micromorph tandem solar cells: optimization of the microcrystalline silicon bottom cell in a single chamber system
Zhang Xiao-Dan(张晓丹), Zheng Xin-Xia(郑新霞), Xu Sheng-Zhi(许盛之), Lin Quan(林泉), Wei Chang-Chun(魏长春), Sun Jian(孙建), Geng Xin-Hua(耿新华), and Zhao Ying(赵颖) . Chin. Phys. B, 2011, 20(10): 108801.
[3] Reduction of the phosphorus contamination for plasma deposition of p–i–n microcrystalline silicon solar cells in a single chamber
Wang Guang-Hong(王光红), Zhang Xiao-Dan(张晓丹), Xu Sheng-Zhi(许盛之), Zheng Xin-Xia(郑新霞), Wei Chang-Chun(魏长春), Sun Jian(孙建), Xiong Shao-Zhen(熊绍珍), Geng Xin-Hua(耿新华), and Zhao Ying(赵颖). Chin. Phys. B, 2010, 19(9): 098102.
[4] The study of amorphous incubation layers during the growth of microcrystalline silicon films under different deposition conditions
Chen Yong-Sheng(陈永生), Xu Yan-Hua(徐艳华), Gu Jin-Hua(谷锦华), Lu Jing-Xiao(卢景霄), Yang Shi-E(杨仕娥), and Gao Xiao-Yong(郜小勇). Chin. Phys. B, 2010, 19(8): 087206.
[5] The effect of initial discharge conditions on the properties of microcrystalline silicon thin films and solar cells
Chen Yong-Sheng(陈永生), Yang Shi-E(杨仕娥), Wang Jian-Hua(汪建华), Lu Jing-Xiao(卢景霄),Gao Xiao-Yong(郜小勇), and Gu Jin-Hua(谷锦华). Chin. Phys. B, 2010, 19(5): 057205.
[6] Analysis of heating effect on the process of high deposition rate microcrystalline silicon
Zhang Xiao-Dan(张晓丹),Zhang He(张鹤),Wei Chang-Chun(魏长春), Sun Jian(孙建), Hou Guo-Fu(侯国付), Xiong Shao-Zhen(熊绍珍),Geng Xin-Hua(耿新华), and Zhao Ying(赵颖). Chin. Phys. B, 2010, 19(3): 038101.
[7] Influence of the total gas flow rate on high rate growth microcrystalline silicon films and solar cells
Han Xiao-Yan(韩晓艳), Hou Guo-Fu(侯国付), Zhang Xiao-Dan(张晓丹), Wei Chang-Chun(魏长春), Li Gui-Jun(李贵君), Zhang De-Kun(张德坤), Chen Xin-Liang(陈新亮), Sun Jian(孙健), Zhang Jian-Jun(张建军), Zhao Ying(赵颖), and Geng Xin-Hua(耿新华). Chin. Phys. B, 2009, 18(8): 3563-3567.
[8] Research on the boron contamination at the p/i interface of microcrystalline silicon solar cells deposited in a single PECVD chamber
Zhang Xiao-Dan(张晓丹), Sun Fu-He(孙福和), Wei Chang-Chun(魏长春), Sun Jian(孙建), Zhang De-Kun(张德坤), Geng Xin-Hua(耿新华), Xiong Shao-Zhen(熊绍珍), and Zhao Ying(赵颖). Chin. Phys. B, 2009, 18(10): 4558-4563.
[9] Electronic structure and defect states of transition films from amorphous to microcrystalline silicon studied by surface photovoltage spectroscopy
Yu Wei(于威), Wang Chun-Sheng(王春生), Lu Wan-Bing(路万兵), He Jie(何杰), Han Xiao-Xia(韩晓霞), and Fu Guang-Sheng(傅广生). Chin. Phys. B, 2007, 16(8): 2310-2314.
[10] Formation mechanism of incubation layers in the initial stage of microcrystalline silicon growth by PECVD
Hou Guo-Fu(侯国付), Xue Jun-Ming(薛俊明), Guo Qun-Chao(郭群超), Sun Jian(孙建), Zhao Ying(赵颖), Geng Xin-Hua(耿新华), and Li Yi-Gang(李乙钢). Chin. Phys. B, 2007, 16(2): 553-557.
[11] Effect of substrate temperature and pressure on properties of microcrystalline silicon films
Wu Zhi-Meng (吴志猛), Lei Qing-Song (雷青松), Geng Xin-Hua (耿新华), Zhao Ying (赵颖), Sun Jian (孙建), Xi Jian-Ping (奚建平). Chin. Phys. B, 2006, 15(6): 1320-1324.
[12] The role of hydrogen in hydrogenated microcrystalline silicon film and in deposition process with VHF-PECVD technique
Yang Hui-Dong (杨恢东), Su Zhong-Yi (苏中义). Chin. Phys. B, 2006, 15(6): 1374-1378.
[13] Influence of total gas flow rate on microcrystalline silicon films prepared by VHF-PECVD
Gao Yan-Tao (高艳涛), Zhang Xiao-Dan (张晓丹), Zhao Ying (赵颖), Sun Jian (孙健), Zhu Feng (朱峰), Wei Chang-Chun (魏长春), Chen Fei (陈飞). Chin. Phys. B, 2006, 15(5): 1110-1113.
[14] Optical emission spectroscopy study on depositionprocess of microcrystalline silicon
Wu Zhi-Meng(吴志猛), Lei Qing-Song(雷青松), Geng Xin-Hua(耿新华), Zhao Ying(赵颖), Sun Jian(孙建), and Xi Jian-Ping(奚建平). Chin. Phys. B, 2006, 15(11): 2713-2717.
[15] Influence of the deposition parameters on the transition region of hydrogenated silicon films growth
Lei Qing-Song (雷青松), Wu Zhi-Meng (吴志猛), Geng Xin-Hua (耿新华), Zhao Ying (赵颖), Xi Jian-Ping (奚建平). Chin. Phys. B, 2005, 14(11): 2342-2347.
No Suggested Reading articles found!