Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 120501    DOI: 10.1088/1674-1056/ac8f3a
GENERAL Prev   Next  

A novel hyperchaotic map with sine chaotification and discrete memristor

Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海)
School of Physics and Electronics, Central South University, Changsha 410083, China
Abstract  Discrete memristor has become a hotspot since it was proposed recently. However, the design of chaotic maps based on discrete memristor is in its early research stage. In this paper, a memristive seed chaotic map is proposed by combining a quadratic discrete memristor with the sine function. Furthermore, by applying the chaotification method, we obtain a high-dimensional chaotic map. Numerical analysis shows that it can generate hyperchaos. With the increase of cascade times, the generated map has more positive Lyapunov exponents and larger hyperchaotic range. The National Institute of Standards and Technology (NIST) test results show that the chaotic pseudo-random sequence generated by cascading two seed maps has good unpredictability, and it indicates the potential in practical application.
Keywords:  discrete memristor      hyperchaotic map      cascade      pseudo-random number generator  
Received:  28 July 2022      Revised:  30 August 2022      Accepted manuscript online:  05 September 2022
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Jn (High-dimensional chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61901530, 62071496, and 62061008).
Corresponding Authors:  Kehui Sun     E-mail:  kehui@csu.edu.cn

Cite this article: 

Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海) A novel hyperchaotic map with sine chaotification and discrete memristor 2022 Chin. Phys. B 31 120501

[1] Chua L 1971 IEEE Transactions on Circuit Theory 18 507
[2] Chua L and Kang S 1976 Proc. IEEE 64 209
[3] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[4] Corinto F and Forti M 2017 IEEE Transactions on Circuits and Systems I-Regular Papers 64 1540
[5] Valov I, Linn E, Tappertzhofen S, Schmelzer S, van den Hurk J, Lentz F and Waser R 2013 Nat. Commun. 4 1771
[6] Zhao B, Xiao M and Zhou Y N 2019 Nanotechnology 30 425202
[7] Wang Y, Ma J, Xu Y, Wu F and Zhou P 2017 Int. J. Bifur. Chaos 27 1750030
[8] Kim H, Sah M, Yang C J, Cho S and Chua L 2012 IEEE Transactions on Circuits and Systems I-Regular Papers 59 2422
[9] Zhang Y, Zhuang J S, Xia Y H, Bai Y Z, Cao J and Gu L F 2019 Commun. Nonlinear Sci. Numer. Simul. 77 40
[10] Nagamani G, Rajan G and Zhu Q X 2020 IEEE Transactions on Cybernetics 50 4281
[11] Li C, Hu M, Li Y N, Jiang H, Ge N, Montgomery E, Zhang J M, Song W h, Davila N, Graves C E, Li Z Y, Strachan J P, Lin P, Wang Z, Barnell M, Wu Q, Williams R S, Yang J J and Xia Q 2018 Nat. Electron. 1 52
[12] Haj-Ali A, Ben-Hur R, Wald N, Ronen R and Kvatinsky S 2018 IEEE Micro 38 13
[13] Ruan J Y, Sun K H, Mou J, He S B and Zhang L M 2018 Eur. Phys. J. Plus 133 3
[14] Wang C H, Xia H and Zhou L 2017 Int. J. Bifurc. Chaos 27 1750091
[15] Bao B C, Bao H, Wang N, Chen M and Xu Q 2017 Chaos, Solitons & Fractals 94 102
[16] Wang G Y, Zang S C, Yuan F and Iu H H C 2017 Chaos 27 013110
[17] Wang, G Y, Cui M Z, Cai B Z, Wang X Y and Hu T L 2015 Mathematical Problems in Engineering 2015 561901
[18] Peng Y X, Sun K H and He S B 2020 Chaos Solitons & Fractals 137 109873
[19] Peng Y X, He S B and Sun K H 2021 AEU-International Journal of Electronics and Communications 129 153539
[20] He S B, Sun K H, Peng Y X and Wang L Y 2020 AIP Advances 10 015332
[21] Zhu W Y, Pu Y F, Liu B, Yu B and Zhou J L 2022 Chin. Phys. B 31 060204
[22] Bao B C, Li H, Wu H, Zhang X and Chen M 2020 Electron. Lett. 56 769
[23] Lin H R, Wang C H, Hong Q H and Sun Y C 2020 IEEE Transactions on Circuits and Systems II-Express Briefs 67 3472
[24] Fu L X, He S B, Wang H H and Sun K H 2021 Acta Phys. Sin. 71 030501 (in Chinese)
[25] Zhou L, Wang C H, Zhang X and Yao W 2018 Int. J. Bifur. Chaos 28 1850050
[26] Gu J C, Li C B, Chen Y D, Iu H H C and Lei T F 2020 IEEE Access 8 12394
[27] Li C B, Wang R, Ma X, Jiang Y C and Liu Z H 2021 Chin. Phys. B 30 120511
[28] Mohanty N, Dey R and Roy B 2020 Eur. Phys. J. Special Top. 229 1231
[29] Zhang Y, Liu Z, Wu H, Chen S and Bao B 2019 Chaos, Solitons and Fractals 127 354
[30] Pham V, Volos C and Fortuna L 2019 Eur. Phys. J. Special Top. 228 1903
[31] Yang Y, Wang L D, Duan S K and Luo L 2021 Optics and Laser Technology 133 106553
[32] Zhou Y C, Hua Z Y, Pun C M and Chen C 2015 IEEE Transactions on Cybernetics 45 2001
[33] Bao B C, Rong K, Li H Z, Li K X, Hua Z Y and Zhang X 2021 IEEE Transactions on Circuits and Systems II-Express Briefs 68 2992
[34] Hua Z Y, Zhou B H and Zhou Y C 2019 IEEE Transactions on Industrial Electronics 66 1273
[35] Hua Z Y, Yi S, Zhou Y C, Li C Q and Wu Y 2018 IEEE Transactions on Cybernetics 48 463
[36] Zheng Y G, Chen G R and Liu Z R 2003 Int. J. Bifur. Chaos 13 3443
[37] Yuan F, Bai C J and Li Y X 2021 Chin. Phys. B 30 120514
[38] Chua L 2014 Semicond. Sci. Technol. 29 104001
[39] Adhikari S, Sah M, Kim H and Chua L 2013 IEEE Transactions on Circuits & Systems I- Regular Papers 60 3008
[40] Bao H, Hua Z Y, Li H Z, Chen M and Bao B C 2021 IEEE Transactions on Circuits and Systems I-Regular Papers 68 4534
[41] Hua Z Y, Zhou Y C and Bao B C 2019 IEEE Transactions on Industrial Informatics 16 887
[42] Richman J S and Moorman J R 2000 American Journal of Physiology-Heart and Circulatory Physiology 278 H2039
[43] Han X T, Bi X G, Sun B, Ren L J and Xiong L 2022 Front. Phys. 10 911144
[44] Chen C, Sun K H and He S B 2019 Eur. Phys. J. Plus 134 410
[1] Anti-symmetric sampled grating quantum cascade laser for mode selection
Qiangqiang Guo(郭强强), Jinchuan Zhang(张锦川), Fengmin Cheng(程凤敏), Ning Zhuo(卓宁), Shenqiang Zhai(翟慎强), Junqi Liu(刘俊岐), Lijun Wang(王利军),Shuman Liu(刘舒曼), and Fengqi Liu(刘峰奇). Chin. Phys. B, 2023, 32(3): 034209.
[2] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[3] THz wave generation by repeated and continuous frequency conversions from pump wave to high-order Stokes waves
Zhongyang Li(李忠洋), Qianze Yan(颜钤泽), Pengxiang Liu(刘鹏翔), Binzhe Jiao(焦彬哲), Gege Zhang(张格格), Zhiliang Chen(陈治良), Pibin Bing(邴丕彬), Sheng Yuan(袁胜), Kai Zhong(钟凯), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(7): 074209.
[4] The dynamics of a memristor-based Rulkov neuron with fractional-order difference
Yan-Mei Lu(卢艳梅), Chun-Hua Wang(王春华), Quan-Li Deng(邓全利), and Cong Xu(徐聪). Chin. Phys. B, 2022, 31(6): 060502.
[5] A nonlinear wave coupling algorithm and its programing and application in plasma turbulences
Yong Shen(沈勇), Yu-Hang Shen(沈煜航), Jia-Qi Dong(董家齐), Kai-Jun Zhao(赵开君), Zhong-Bing Shi(石中兵), and Ji-Quan Li(李继全). Chin. Phys. B, 2022, 31(6): 065206.
[6] Ultra-broadband absorber based on cascaded nanodisk arrays
Qi Wang(王琦), Rui Li(李瑞), Xu-Feng Gao(高旭峰), Shi-Jie Zhang(张世杰), Rui-Jin Hong(洪瑞金), Bang-Lian Xu(徐邦联), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2022, 31(4): 040203.
[7] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[8] FPGA implementation and image encryption application of a new PRNG based on a memristive Hopfield neural network with a special activation gradient
Fei Yu(余飞), Zinan Zhang(张梓楠), Hui Shen(沈辉), Yuanyuan Huang(黄园媛), Shuo Cai(蔡烁), and Sichun Du(杜四春). Chin. Phys. B, 2022, 31(2): 020505.
[9] Experimental demonstration of a fast calibration method for integrated photonic circuits with cascaded phase shifters
Junqin Cao(曹君勤), Zhixin Chen(陈志歆), Yaxin Wang(王亚新), Tianfeng Feng(冯田峰), Zhihao Li(李志浩), Zeyu Xing(邢泽宇), Huashan Li(李华山), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2022, 31(11): 114204.
[10] Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers
Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2022, 31(10): 100505.
[11] Cascading failures of overload behaviors using a new coupled network model between edges
Yu-Wei Yan(严玉为), Yuan Jiang(蒋沅), Rong-Bin Yu(余荣斌), Song-Qing Yang(杨松青), and Cheng Hong(洪成). Chin. Phys. B, 2022, 31(1): 018901.
[12] GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers
Yi Zhang(张一), Cheng-Ao Yang(杨成奥), Jin-Ming Shang(尚金铭), Yi-Hang Chen(陈益航), Tian-Fang Wang(王天放), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Bing Liu(刘冰), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2021, 30(9): 094204.
[13] Theoretical analysis and experimental validation of radial cascaded composite ultrasonic transducer
Xiao-Yu Wang(王晓宇), Zhi-Xin Yu(余芷欣), Jing Hu(胡静), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2021, 30(4): 040701.
[14] High-efficiency terahertz wave generation with multiple frequencies by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Binzhe Jiao(焦彬哲), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Gege Zhang(张格格), Qianze Yan(颜钤泽), Pibin Bing(邴丕彬), Fengrui Zhang(张风蕊), Zhan Wang(王湛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(4): 044211.
[15] Beam steering characteristics in high-power quantum-cascade lasers emitting at 4.6 μ m
Yong-Qiang Sun(孙永强), Jin-Chuan Zhang(张锦川), Feng-Min Cheng(程凤敏), Chao Ning(宁超), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Feng-Qi Liu(刘峰奇), Jun-Qi Liu(刘俊岐), Shu-Man Liu(刘舒曼), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(3): 034211.
No Suggested Reading articles found!