Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(9): 090514    DOI: 10.1088/1674-1056/20/9/090514
GENERAL Prev   Next  

Elimination of spiral waves and spatiotemporal chaos by the synchronization transmission technology of network signals

Zhang Qing-Ling(张庆灵)a), Lü Ling(吕翎) a)b)† , and Zhang Yi(张翼)a)c)
a Institute of System Science, Northeastern University, Shenyang 110004, China; b College of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029, China; c College of Science, Shenyang University of Technology, Shenyang 110870, China
Abstract  A method to eliminate spiral waves and spatiotemporal chaos by using the synchronization transmission technology of network signals is proposed in this paper. The character of the spiral waves and the spatiotemporal chaos in the Fitzhugh—Nagumo model is presented. The network error evolution equation with spatiotemporal variables and the corresponding eigenvalue equation are determined based on the stability theory, and the global synchronization condition is obtained. Simulations are made in a complex network with Fitzhugh—Nagumo models as the nodes to verify the effectiveness of the synchronization transmission principle of the network signal.
Keywords:  synchronization      complex network      spatiotemporal chaos      spiral waves  
Received:  27 March 2011      Revised:  13 May 2011      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Pq (Numerical simulations of chaotic systems)  

Cite this article: 

Zhang Qing-Ling(张庆灵), Lü Ling(吕翎), and Zhang Yi(张翼) Elimination of spiral waves and spatiotemporal chaos by the synchronization transmission technology of network signals 2011 Chin. Phys. B 20 090514

[1] Karma A 1993 Phys. Rev. Lett. 71 1103
[2] Sinha S, Pande A and Pandit R 2001 Phys. Rev. Lett. 86 3678
[3] Zhang H, Hu B and Hu G 2003 Phys. Rev. E 68 026134
[4] Zhang C X, Zhang H, Ouyang Q, Hu B and Gunaratne G H 2003 Phys. Rev. E 68 036202
[5] Zhang H, Ruan X S, Hu B and Ouyang Q 2004 Phys. Rev. E 70 016212
[6] Naknaimueang S, Allen M A and Müller S C 2006 Phys. Rev. E 74 066209
[7] Zhan M and Kapral R 2006 Phys. Rev. E 73 026224
[8] Gao J Z, Yang S X, Xie L L and Gao J H 2011 Chin. Phys. B 20 030505
[9] Zhong M and Tang G N 2010 Acta Phys. Sin. 59 1593 (in Chinese)
[10] Martens E A, Laing C R and Strogatz S H 2010 Phys. Rev. Lett. 104 044101
[11] Hildebrand M, Bär M and Eiswirth M 1995 Phys. Rev. Lett. 75 1503
[12] Nicolis G and Prigogine I 1977 Self-organization in Nonequilibrium System (New York: Wiley)
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[4] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[5] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[6] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[7] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[8] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[9] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[10] Effect of observation time on source identification of diffusion in complex networks
Chaoyi Shi(史朝义), Qi Zhang(张琦), and Tianguang Chu(楚天广). Chin. Phys. B, 2022, 31(7): 070203.
[11] An extended improved global structure model for influential node identification in complex networks
Jing-Cheng Zhu(朱敬成) and Lun-Wen Wang(王伦文). Chin. Phys. B, 2022, 31(6): 068904.
[12] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[13] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[14] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[15] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
No Suggested Reading articles found!