Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 067304    DOI: 10.1088/1674-1056/20/6/067304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Kink effect in AlGaN/GaN high electron mobility transistors by electrical stress

Ma Xiao-Hua(马晓华)a)b)† , Ma Ji-Gang(马骥刚) a), Yang Li-Yuan(杨丽媛)b), He Qiang(贺强)a), Jiao Ying(焦颖)a), Ma Ping(马平)a), and Hao Yue(郝跃) b)
a School of Technical Physics, Xidian University, Xi'an 710071, China; b Key Laboratory for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics,Xidian University, Xi'an 710071, China
Abstract  The kink effect is studied in an AlGaN/GaN high electron mobility transistor by measuring DC performance during fresh, short-term stress and recovery cycle with negligible degradation. Vdg plays an assistant role in detrapping electrons and short-term stress results in no creation of new category traps but an increase in number of active traps. A possible mechanism is proposed that electrical stress supplies traps with the electric field for activation and when device is under test field-assisted hot-electrons result in electrons detrapping from traps, thus deteriorating the kink effect. In addition, experiments show that the impact ionization is at a relatively low level, which is not the dominant mechanism compared with trapping effect. We analyse the complicated link between the kink effect and stress bias through groups of electrical stress states: Vds=0-state, off-state, on-state (on-state with low voltage, high-power state, high field state). Finlly, a conclusion is drawn that electric field brings about more severe kink effect than hot electrons. With the assistance of electric field, hot electrons tend to be possible to modulate the charges in deep-level trap.
Keywords:  high electron mobility transistors      AlGaN/GaN      kink effect      stress states  
Received:  22 February 2011      Revised:  28 March 2011      Accepted manuscript online: 
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.61.Ey (III-V semiconductors)  
  78.30.Fs (III-V and II-VI semiconductors)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB309606).

Cite this article: 

Ma Xiao-Hua(马晓华), Ma Ji-Gang(马骥刚), Yang Li-Yuan(杨丽媛), He Qiang(贺强), Jiao Ying(焦颖), Ma Ping(马平), and Hao Yue(郝跃) Kink effect in AlGaN/GaN high electron mobility transistors by electrical stress 2011 Chin. Phys. B 20 067304

[1] Wu Y F, Moore M, Saxler A, Wisleder T and Parikh P 2006 Device Research Conference 64th, State College, PA, USA p. 151
[2] Quan S, Hao Y, Ma X H and Yu H Y 2011 Chin. Phys. B 20 018101
[3] Hu G Z, Yang L, Yang L Y, Quan S, Jiang S G, Ma J G, Ma X H and Hao Y 2010 Chin. Phys. B 19 087302
[4] Liu H X, Hao Y, Zhang T, Zheng X F and Ma X H 2003 Acta Phys. Sin. 52 584 (in Chinese)
[5] Meneghesso G, Zanon F, Uren M J and Zanoni E 2009 IEEE Electron. Device Lett. 30 100
[6] Meneghesso G, Rossi F, Salviati G, Uren M J, Mu noz E and Zanoni E 2010 Appl. Phys. Lett. 96 263512
[7] Cuerdo R, Pei Y, Chen Z, Keller S, DenBaars S P, Calle F and Mishra U K 2009 IEEE Electron. Device Lett. 30 209
[8] Simoen E, Dierickx B, Gao M H and Claeys C 1991 Microelectronic Engineering 15 457
[9] Sozza A, Dua C, Morvan E, diForte-Poisson M A, Delage S, Rampazzo F, Tazzoli A, Danesin F, Meneghesso G, Zanoni E, Curutchet A, Malbert N, Labat N, Grimbert B and De Jaeger J C 2005 International Electron Devices Meeting, Washington, DC USA p. 593
[10] Somerville M H, del Alamo J A and Hoke W 1995 International Electron Devices Meeting, Washington, DC, USA p. 201
[11] Sze S M and Kwok K Ng 2007 Physics of Semiconductor Devices 3rd edn. pp. 43, 44
[12] Meneghesso G, Verzellesi G, Rampazzo F, Zanon F, Danesin F, Tazzoli A, Meneghini M and Zanoni E 2008 IEEE Trans. Device and Material Reliability 8 332
[13] Canali C, Neviani A, Tedesco C, Enrico Zanoni, Antonio Cetronio and Claudio Lanzieri 2002 IEEE Trans. Electron. Devices 40 498
[14] Moolji A A, Bahl S R and del Alamo J A 1994 IEEE Electron. Device Lett. 15 313
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[3] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[4] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[5] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[6] High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027103.
[7] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
[8] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[9] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[10] High-frequency enhancement-mode millimeterwave AlGaN/GaN HEMT with an fT/fmax over 100 GHz/200 GHz
Sheng Wu(武盛), Minhan Mi(宓珉瀚), Xiaohua Ma(马晓华), Ling Yang(杨凌), Bin Hou(侯斌), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087102.
[11] Ferroelectric effect and equivalent polarization charge model of PbZr0.2Ti0.8O3 on AlGaN/GaN MIS-HEMT
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Ang Li(李昂), Kai Liu(刘凯), Yun-Long He(何云龙), Xiao-Li Lu(陆小力) and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(5): 057302.
[12] Effects of notch structures on DC and RF performances of AlGaN/GaN high electron mobility transistors
Hao Zou(邹浩), Lin-An Yang(杨林安), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(4): 040502.
[13] Distribution of donor states on the surfaceof AlGaN/GaN heterostructures
Yue-Bo Liu(柳月波), Hong-Hui Liu(刘红辉), Jun-Yu Shen(沈俊宇), Wan-Qing Yao(姚婉青), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(12): 128102.
[14] Abnormal phenomenon of source-drain current of AlGaN/GaN heterostructure device under UV/visible light irradiation
Yue-Bo Liu(柳月波), Jun-Yu Shen(沈俊宇), Jie-Ying Xing(邢洁莹), Wan-Qing Yao(姚婉青), Hong-Hui Liu(刘红辉), Ya-Qiong Dai(戴雅琼), Long-Kun Yang(杨隆坤), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(11): 117302.
[15] Impact of oxygen in electrical properties and hot-carrier stress-induced degradation of GaN high electron mobility transistors
Lixiang Chen(陈丽香), Min Ma(马敏), Jiecheng Cao(曹杰程), Jiawei Sun(孙佳惟), Miaoling Que(阙妙玲), and Yunfei Sun(孙云飞). Chin. Phys. B, 2021, 30(10): 108502.
No Suggested Reading articles found!