Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 064701    DOI: 10.1088/1674-1056/20/6/064701
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Scaling of heat transfer in gas–gas injector combustor

Wang Xiao-Wei(汪小卫), Cai Guo-Biao(蔡国飙), and Gao Yu-Shan(高玉闪)
School of Astronautics, Beihang University, Beijing 100191, China
Abstract  The scaling of heat transfer in gas–gas injector combustor is investigated theoretically, numerically and experimentally based on the previous study on the scaling of gas–gas combustion flowfield. The similarity condition of the gas–gas injector combustor heat transfer is obtained by conducting a formulation analysis of the boundary layer Navier–Stokes equations and a dimensional analysis of the corresponding heat transfer phenomenon. Then, a practicable engineering scaling criterion of the gas–gas injector combustor heat transfer is put forward. The criterion implies that when the similarity conditions of inner flowfield are satisfied, the size and the pressure of gas–gas combustion chamber can be changed, while the heat transfer can still be qualitatively similar to the distribution trend and quantitatively correlates well with the size and pressure as qpc0.8dt-0.2 . Based on the criterion, single-element injector chambers with different geometric sizes and at different chamber pressures ranging from 1 MPa to 20 MPa are numerically simulated. A single-element injector chamber is designed and hot-fire tested at seven chamber pressures from 0.92 MPa to 6.1 MPa. The inner wall heat flux are obtained and analysed. The numerical and experimental results both verified the scaling criterion in gas–gas injector combustion chambers under different chamber pressures and geometries.
Keywords:  similarity      heat transfer      gas-gas combustion      simulation      experiment  
Received:  16 December 2010      Revised:  11 January 2011      Accepted manuscript online: 
PACS:  47.70.-n (Reactive and radiative flows)  
  44.90.+c (Other topics in heat transfer)  
  47.27.te (Turbulent convective heat transfer)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2008AA7023) and the Innovation Foundation of Beihang University for Ph. D. Graduates (Grant No. 430569).

Cite this article: 

Wang Xiao-Wei(汪小卫), Cai Guo-Biao(蔡国飙), and Gao Yu-Shan(高玉闪) Scaling of heat transfer in gas–gas injector combustor 2011 Chin. Phys. B 20 064701

[1] Penner S S 1955 Combustion Research and Review AGARD Combustion Colloquium (London: Butterworths) pp. 140-162
[2] Penner S S 1957 Chemical Problems in Jet Propulsion (London: Pergamon) pp. 345-347, pp. 376-388
[3] Dexter C E, Fisher M F, Hulka J R, Denisov K P, Shibanov A A and Agarkov A F 2004 Liquid Rocket Thrust Chambers: Aspects of Modeling, Analysis and Design ed. Yang V, Habiballah M, Hulka J, and Popp M, in Progress in Astronautics and Aeronautics 200 553
[4] Kenny R J, Moser M D, Hulka J R and Jones G 2006 AIAA Paper 2006-4705
[5] Hulka J R 2008 AIAA Paper 2008-5113
[6] Davis J A and Campbell R L 1997 AIAA Paper 1997-3118
[7] Wim A de Groot, Thomas J McGuire and Steven J Schneider 1997 AIAA Paper 1997-2847
[8] Calhoon D, Ito J and Kors D 1973 NASA CR-121234, Contract NAS3-13379
[9] Foust M J, Deshpande M, Pal S, Ni T, Merkle C L and Santoro R J 1996 AIAA Paper 1996-0646
[10] Schley C A, Hagemann G and Tucker P K 1997 AIAA Paper 1997-3302
[11] Tucker P K, Klemt M D and Smith T D 1997 AIAA Paper 1997-3350
[12] Farhangi S, Yu T, Rojas L, Sprouse K and McKinnon J 1999 AIAA Paper 1999-2757
[13] Archambault M R, Talley D and Peroomian O 2002 AIAA Paper 2002-1088
[14] Smith T D, Klem M D and Breisacher K J 2002 NASA/TM-2002-211982
[15] Marshall W M, Pal S, Woodward R D and Santoro R J 2005 AIAA Paper 2005-3572
[16] Lin J, West J S, Williamst R W, Tucker P K and Chenoweth J D 2005 AIAA Paper 2005-4524
[17] Tucker P K, Menon S, Merkle C L, Oefelein J C and Yang V 2007 AIAA Paper 2007-5572
[18] Tucker P K, Menon S, Merkle C L, Oefelein J C and Yang V 2008 AIAA Paper 2008-5226
[19] Vaidyanathan R, Tucker P K, Papial N and Shyy W 2004 J. Propul. Power 20 705
[20] Sozer E, Vaidyanathan A, Segal C and Shyy W 2009 AIAA Paper 2009-449
[21] Cai G B, Wang X W, Jin P and Gao Y S 2008 AIAA Paper 2008-4562
[22] Wang X W, Cai G B and Gao Y S 2009 AIAA Paper 2009-5042
[23] Wang X W, Gao Y S and Cai G B 2010 J. Aerospace Power 35 (in Chinese)
[24] Wang X W, Gao Y S and Cai G B 2010 J. Aerospace Power 35 (in Chinese)
[25] Wang X W, Jin P, Zhang G Z and Cai G B 2008 J. Propulsion Technology 4 407 (in Chinese)
[26] Wang X W, Jin P and Cai G B 2009 J. Beijing University of Aeronautics and Astronautics 35 (in Chinese)
[27] Wang X W, Jin P and Cai G B 2010 Acta Aeronautica et Astronautica Sinica 32 1305 (in Chinese)
[28] Cai G B, Wang X W, Jin P and Gao Y S 2011 J. Propulsion and Power (accepted)
[29] Wang X W, Cai G B and Jin P 2010 Chin. Phys. B 19 019401
[30] Gao Y W 2002 Experimental Fluid Dynamics (Xián: Northwestern Polytechnical University Press)
[31] Pope S B 2000 Turbulent Flows (Cambridge: Cambridge University Press)
[32] Bian B M, He A Z, Li Z H, Yang L, Zhang P, Shen Z H and Ni X W 2005 Acta Phys. Sin. 54 5534 (in Chinese)
[33] Ievlev V M 1953 Rocket Engines (Moscow: National Defence Industry Press) (in Russion)
[34] Liu G Q 1993 Theory of Rocket Engines (Beijing: Aerospace Press)
[35] Bartz D R 1968 in Advances in Rocket Propulsion ed. Penner S S (Manchester: AGARD, Technivision Services)
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[3] Effect of bio-tissue deformation behavior due to intratumoral injection on magnetic hyperthermia
Yundong Tang(汤云东), Jian Zou(邹建), Rodolfo C.C. Flesch, and Tao Jin(金涛). Chin. Phys. B, 2023, 32(3): 034304.
[4] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[5] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[6] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[7] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[8] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[9] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[10] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[11] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[12] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[13] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
[14] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[15] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
No Suggested Reading articles found!