Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 064501    DOI: 10.1088/1674-1056/20/6/064501
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Effect of acceleration threshold on the phase transition in a cellular automaton traffic flow model

Jin Cheng-Jie(金诚杰)a)†, Wang Wei(王炜) a), Gao Kun(高坤)b), and Jiang Rui(姜锐)c)
a School of Transportation, Southeast University of China, Nanjing 210096, China; b Physics and Biology Unit, Okinawa Institute of Science and Technology, Okinawa 904-0411, Japan; c School of Engineering Science, University of Science and Technology of China, Hefei 230026, China
Abstract  In this paper, we incorporate new parameters into a cellular automaton traffic flow model proposed in our previous paper [Jin et al. 2010 J. Stat. Mech. 2010 P03018]. Through these parameters, we adjust the anticipated velocity and the acceleration threshold separately. It turns out that the flow rate of synchronized flow mainly changes with the anticipated velocity, and the F→S phase transition feature mainly changes with the acceleration threshold. Therefore, we conclude that the acceleration threshold is the major factor affecting the F→S phase transition.
Keywords:  traffic flow      cellular automaton      synchronized flow      phase transition  
Received:  11 November 2010      Revised:  15 December 2010      Accepted manuscript online: 
PACS:  45.70.Vn (Granular models of complex systems; traffic flow)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10872194 and 50738001).

Cite this article: 

Jin Cheng-Jie(金诚杰), Wang Wei(王炜), Gao Kun(高坤), and Jiang Rui(姜锐) Effect of acceleration threshold on the phase transition in a cellular automaton traffic flow model 2011 Chin. Phys. B 20 064501

[1] Helbing D 2001 Rev. Mod. Phys. 73 1067
[2] Chowdhury D, Santen L and Schadschneider A 2000 Phys. Rep. 329 199
[3] Mahnke R, Kaupuvzs J and Lubashevsky I 2005 Phys. Rep. 408 1
[4] Maerivoet S and De Moor B 2005 Phys. Rep. 419 1
[5] Nagatani T 2002 Rep. Prog. Phys. 65 1331
[6] Xue Y 2002 Chin. Phys. 11 1128
[7] Li K P and Gao Z Y 2005 Chin. Phys. 14 930
[8] Li L and Shi P F 2005 Chin. Phys. 14 576
[9] Tang C F, Jiang R and Wu Q S 2007 Chin. Phys. 16 1570
[10] Gao K, Wang B H, Fu C J and Lu Y F 2007 Chin. Phys. 16 3483
[11] Jiang R, Jin W L and Wu Q S 2008 Chin. Phys. B 17 829
[12] Kerner B S 2004 The Physics of Traffic (Berlin: Springer)
[13] Kerner B S, Klenov S L and Wolf D E 2002 J. Phys. A: Math. Gen. 35 9971
[14] Kerner B S and Klenov S L 2002 J. Phys. A: Math. Gen. 35 L31
[15] Lee H K, Barlovic R, Schreckenberg M and Kim D 2004 Phys. Rev. Lett. 92 23870
[16] Jiang R and Wu Q S 2003 J. Phys. A: Math. Gen. 36 381
[17] Jiang R and Wu Q S 2005 Eur. Phys. J. B 46 581
[18] Gao K, Jiang R, Hu S X, Wang B H and Wu Q S 2007 Phys. Rev. E 76 026105
[19] Gao K, Jiang R, Wang B H and Wu Q S 2009 Physica A 388 3233
[20] Jin C J, Wang W, Jiang R and Gao K 2010 J. Stat. Mech. 2010 P03018
[21] Krauss S, Wagner P and Gawron C 1997 Phys. Rev. E 55 5597
[22] Barlovic R, Santen L, Schadschneider A and Schreckenberg M 1998 Eur. Phys. J. B 5 793
[23] Li X B, Wu Q S and Jiang R 2001 Phys. Rev. E 64 066l28
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[5] A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment
Guang-Han Peng(彭光含), Chun-Li Luo(罗春莉), Hong-Zhuan Zhao(赵红专), and Hui-Li Tan(谭惠丽). Chin. Phys. B, 2023, 32(1): 018902.
[6] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[7] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[8] Numerical simulation on dendritic growth of Al-Cu alloy under convection based on the cellular automaton lattice Boltzmann method
Kang-Wei Wang(王康伟), Meng-Wu Wu(吴孟武), Bing-Hui Tian(田冰辉), and Shou-Mei Xiong(熊守美). Chin. Phys. B, 2022, 31(9): 098105.
[9] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[10] Nonvanishing optimal noise in cellular automaton model of self-propelled particles
Guang-Le Du(杜光乐) and Fang-Fu Ye(叶方富). Chin. Phys. B, 2022, 31(8): 086401.
[11] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[12] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[13] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[14] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[15] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
No Suggested Reading articles found!