Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 065201    DOI: 10.1088/1674-1056/20/6/065201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Landau damping of longitudinal oscillation in ultra- relativistic plasmas with nonextensive distribution

Liu San-Qiu (刘三秋), Xiao-Chang (陈小昌)
Department of Physics, Nanchang University, Nanchang 330031, China
Abstract  The generalized dispersion equation for longitudinal oscillation in an unmagnetized, collisionless, isotropic and relativistic plasma is derived in the context of nonextensive q-distribution. An analytical expression for the Landau damping is obtained in an ultra-relativistic regime, which is related to q-parameter. In the limit q → 1, the result based on the relativistic Maxwellian distribution is recovered. It is shown that the interactions between the wave and particles are stronger and the waves are more strongly damped for lower values of q-parameter. The results are explained by the increased number of superthermal particles or low velocity particles contained in the plasma with the nonextensive distribution.
Keywords:  relativistic plasma      Landau damping      nonextensive distribution      longitudinal oscillation  
Received:  03 November 2010      Revised:  25 November 2010      Accepted manuscript online: 
PACS:  52.20.-j (Elementary processes in plasmas)  
  52.25.Dg (Plasma kinetic equations)  
  52.27.Ny (Relativistic plasmas)  
  52.35.-g (Waves, oscillations, and instabilities in plasmas and intense beams)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10963002), the International S & T Coopera- tion Program of China and Jiangxi Province (Grant No. 2009DFA02320), the Program for Innovative Research Team of Nanchang University, and the National Basic Research Program of China (Grant No. 2010CB635112).

Cite this article: 

Liu San-Qiu (刘三秋), Xiao-Chang (陈小昌) Landau damping of longitudinal oscillation in ultra- relativistic plasmas with nonextensive distribution 2011 Chin. Phys. B 20 065201

[1] Gell-Mann M and Tsallis C 2004 Nonextensive Entropy-Interdisciplinary Applications (New York: Oxford University Press)
[2] Tsallis C 1988 J. Stat. Phys. 52 479
[3] Plastino A and Plastino A R 1993 Phys. Lett. A 177 177
[4] Boghosian B M 1996 Phys. Rev. E 53 4754
[5] Lavagno A, Kaniadakis G, Rego-Monteiro M, Quarati P and Tsallis C 1998 Astrophys. Lett. 35 449
[6] Alberico W M, Lavagno A and Quarati P 2000 Eur. Phys. J. C 12 499
[7] Wilk G and Wlodarczyk Z 2000 Phys. Rev. Lett. 84 2770
[8] Bediaga I, Curado E M F and de Miranda J M 2000 Physica A 286 156
[9] Beck C 2000 Physica A 286 164
[10] Drummond W E 2004 Phys. Plasmas 11 552
[11] Short R W and Simon A 1998 Phys. Plasmas 5 4124
[12] Rose D V, Guillory J and Beall J H 2005 Phys. Plasmas 12 014501
[13] Chust T, Belmont G, Mottez F and Hess S 2009 Phys. Plasmas 16 092104
[14] Bers A, Shkarofsky I P and Shoucri M 2009 Phys. Plasmas 16 022104
[15] Ji P Y, Lu N and Zhu J 2009 Acta Phys. Sin. 58 7473 (in Chinese)
[15] Lima J A S, Silva Jr R and Janilo Santos 2000 Phys. Rev. E 61 3260
[16] Valentini 2005 Phys. Plasmas 12 072106
[17] Liu L Y and Du J L 2008 Physica A 387 4821
[18] Curtis M F 1991 The Theory of Neutron Stars Magnetospheres (Chicago: University of Chicago Press)
[19] Cheng A F and Ruderman M A 1980 Astrophys. J. 235 576
[20] Hirotani K, Iguchi S, Kimura M and Wajima K 2000 Astrophys. J. 545 100
[21] Wardle J F C, Homan D C, Ojha R and Roberts D H 1998 Nature 395 457
[22] Mourou G and Umstadter D 1992 Phys. Fluids B 4 2315
[23] Lavagno A 2002 Phys. Lett. A 301 13
[24] Li X Q 2004 Collapsing Dynamics of Plasmons (Beijing: Chinese Science and Technology Press)
[25] Lifshitz E M and Pitaevskii L P 1981 Physical Kinetics (Oxford: Pergamon)
[26] Mikhailovskii A B 1980 Plasma Phys. 22 133
[1] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[2] Relaxation dynamics of Kuramoto model with heterogeneous coupling
Tianwen Pan(潘天文), Xia Huang(黄霞), Can Xu(徐灿), Huaping Lü(吕华平). Chin. Phys. B, 2019, 28(12): 120503.
[3] The inverse Bremsstrahlung absorption in the presence of Maxwellian and non-Maxwellian electrons
Mehdi Sharifian, Fatemeh Ghoveisi, Leila Gholamzadeh, Narges Firouzi Farrashbandi. Chin. Phys. B, 2019, 28(10): 105202.
[4] Analysis of Landau damping in radially inhomogeneous plasma column
H Rajabalinia-Jelodar, M K Salem, F M Aghamir, H Zakeri-Khatir. Chin. Phys. B, 2018, 27(5): 055203.
[5] Parallel propagating modes and anomalous spatial damping in the ultra-relativistic electron plasma with arbitrary degeneracy
H Farooq, M Sarfraz, Z Iqbal, G Abbas, H A Shah. Chin. Phys. B, 2017, 26(11): 110301.
[6] Landau damping in a dipolar Bose-Fermi mixture in the Bose-Einstein condensation (BEC) limit
S M Moniri, H Yavari, E Darsheshdar. Chin. Phys. B, 2016, 25(12): 126701.
[7] Effect of Bohm quantum potential in the propagation of ion-acoustic waves in degenerate plasmas
M M Hasan, M A Hossen, A Rafat, A A Mamun. Chin. Phys. B, 2016, 25(10): 105203.
[8] K—P—Burgers equation in negative ion-rich relativistic dusty plasma including the effect of kinematic viscosity
A N Dev, M K Deka, J Sarma, D Saikia, N C Adhikary. Chin. Phys. B, 2016, 25(10): 105202.
[9] Landau damping in a bounded magnetized plasma column
H. Zakeri-Khatir, F. M. Aghamir. Chin. Phys. B, 2015, 24(2): 025201.
[10] Landau damping and frequency-shift of a quadrupole mode in a disc-shaped rubidium Bose-Einstein condensate
Rahmut Arzigul (阿孜古丽·热合木提), Peng Sheng-Qiang (彭胜强), Ma Xiao-Dong (马晓栋). Chin. Phys. B, 2014, 23(9): 090311.
[11] Effect on Landau damping rates for non-Maxwellian distribution function consisting of two electron populations
M. N. S. Qureshi, S. Sehar, H. A. Shah, J. B. Cao. Chin. Phys. B, 2013, 22(3): 035201.
[12] Nonlinear Landau damping of high frequency waves in non-Maxwellian plasmas
M. N. S. Qureshi, Sumbul Sehar, J. K. Shi, H. A. Shah. Chin. Phys. B, 2013, 22(11): 115201.
[13] Landau damping of collective mode in a quasi-two-dimensional repulsive Bose–Einstein condensate
Ma Xiao-Dong(马晓栋), Yang Zhan-Jin(杨占金), Lu Jun-Zhe(路俊哲), and Wei Wei(魏蔚). Chin. Phys. B, 2011, 20(7): 070307.
[14] Landau damping of collective modes in a harmonically trapped Bose--Einstein condensate
Ma Xiao-Dong(马晓栋), Zhou Yu(周昱), Ma Yong-Li(马永利), and Huang Guo-Xiang(黄国翔). Chin. Phys. B, 2006, 15(8): 1871-1878.
No Suggested Reading articles found!