Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 064202    DOI: 10.1088/1674-1056/20/6/064202
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Broadband tunable external cavity laser using a bent-waveguide quantum-dot superluminescent diode as gain device

Wu Jian(吴剑)a), Lü Xue-Qin(吕雪芹) a), Jin Peng(金鹏)a)†, Meng Xian-Quan(孟宪权)b), and Wang Zhan-Guo(王占国)a)
a Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; b Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
Abstract  A broadband tunable grating-coupled external cavity laser is realized by employing a self-assembled InAs/GaAs quantum-dot (QD) superluminescent diode (SLD) as the gain device. The SLD device is processed with a bent-waveguide structure and facet antireflection (AR) coating. Tuning bandwidths of 106 nm and 117 nm are achieved under 3-A and 3.5-A injection currents, respectively. The large tuning range originates essentially from the broad gain spectrum of self-assembled QDs. The bent waveguide structure combined with the facet AR coating plays a role in suppressing the inner-cavity lasing under a large injection current.
Keywords:  quantum dot      external cavity laser      broadband tuning  
Received:  06 November 2010      Revised:  17 December 2010      Accepted manuscript online: 
PACS:  42.60.Fc (Modulation, tuning, and mode locking)  
  78.67.Hc (Quantum dots)  
  81.07.Ta (Quantum dots)  
  81.16.Dn (Self-assembly)  
Fund: Project supported by the National Key Basic Research and Development Program of China (Grant No. 2006CB604904) and the National Natural Science Foundation of China (Grant Nos. 60976057, 60876086, 60776037, and 10775106).

Cite this article: 

Wu Jian(吴剑), Lü Xue-Qin(吕雪芹), Jin Peng(金鹏), Meng Xian-Quan(孟宪权), and Wang Zhan-Guo(王占国) Broadband tunable external cavity laser using a bent-waveguide quantum-dot superluminescent diode as gain device 2011 Chin. Phys. B 20 064202

[1] Yi L, Yuan J, Qi X H, Chen W L, Zhou D W, Zhou T, Zhou X J and Chen X Z 2009 Chin. Phys. B 18 1409
[2] Cooney T F, Skinner H T and Angel S M 1995 Appl. Spectrosc. 49 846
[3] Masaki O, Ikuo W and Masabumi M 2001 Jpn. J. Appl. Phys. 40 357
[4] Wysocki G, Curl R F, Tittel F K, Maulini R, Bulliard J M and Faist J 2005 Appl. Phys. B 81 769
[5] Ho H L, Jin W and Demokan M S 2000 Electron. Lett. 36 1191
[6] Kuramoto N and Fujii K 2005 IEEE Trans. Instrum. Meas. 54 868
[7] Chinn S R, Swanson E A and Fujimoto J G 1997 Opt. Lett. 22 340
[8] Srinivasan V J, Huber R, Gorczynska I, Fujimoto J G, Jiang J Y, Reisen P and Cable A E 2007 Opt. Lett. 32 361
[9] Sun Z Z, Ding D, Gong Q, Zhou W, Xu B and Wang Z G 1999 Opt. Quantum Electron. 31 1235
[10] Zhang Z Y, Wang Z G, Xu B, Jin P, Sun Z Z and Liu F Q 2004 IEEE Photon. Technol. Lett. 16 27
[11] Han I K, Heo D C, Song J D, Lee J I and Lee J I 2004 J. Korean Phys. Soc. 45 1193
[12] Li L H, Rossetti M, Fiore A, Occhi L and Vélez C 2006 Phys. Stat. Sol. B 243 3988
[13] Dimas C E, Djie H S and Ooi B S 2006 J. Cryst. Growth 288 153
[14] Andreeva E V, Zhukov A E, Prokhorov V V, Ustinov V M and Yakubovich S D 2006 Quantum Electron. 36 527
[15] Xin Y C, Martinez A, Saiz T, Moscho A J, Li Y, Nilsen T A, Gray A L and Lester L F 2007 IEEE Photon. Technol. Lett. 19 501
[16] Lü X Q, Liu N, Jin P and Wang Z G 2008 IEEE Photon. Technol. Lett. 20 1742
[17] Zhang Z Y, Hogg R A, Xu B, Jin P and Wang Z G 2008 Opt. Lett. 33 1210
[18] Kovsh A, Krestnikov I, Livshits D, Mikhrin S, Weimert J and Zhukov A 2007 Opt. Lett. 32 793
[19] Djie H S, Ooi B S, Fang X M, Wu Y, Fastenau J M, Liu W K and Hopkinson M 2007 Opt. Lett. 32 44
[20] Varangis P M, Li H, Liu G T, Newell T C, Stintz A, Fuchs B, Malloy K J and Lester L F 2000 Electron. Lett. 36 1544
[21] Li H, Liu G T, Varangis P M, Newell T C, Stintz A, Fuchs B, Malloy K J and Lester L F 2000 IEEE Photon. Technol. Lett. 12 759
[22] Eliseev P, Li H, Stintz A, Liu G T, Newell T C, Malloy K J and Lester L F 2000 IEEE J. Quantum Electron. 36 479
[23] Biebersdorf A, Lingk C, Giorgi M De, Feldmann J, Sacher J, Arzberger M, Ulbrich C, Böhm G, Amann M C and Abstreiter G 2003 J. Phys. D: Appl. Phys. 36 1928
[24] Allen C Nhì, Poole P J, Barrios P, Marshall P, Pakulski G, Raymond S and Fafard S 2005 Physica E 26 372
[25] Ortner G, Allen C Nhì, Dion C, Barrios P, Poitras D, Dalacu D, Pakulski G, Lapointe J, Poole P J, Render W and Raymond S 2006 Appl. Phys. Lett. 88 121119
[26] A Tierno and T Ackemann 2007 Appl. Phys. B 89 585
[27] Nevsky A Yu, Bressel U, Ernsting I, Eisele Ch, Okhapkin M, Schiller S, Gubenko A, Livshits D, Mikhrin S, Krestnikov I and Kovsh A 2008 Appl. Phys. B 92 501
[28] Lü X Q, Jin P and Wang Z G 2010 Chin. Phys. B 19 018104
[29] Lü X Q, Jin P, Wang W Y and Wang Z G 2010 Opt. Express 18 8916
[30] Fedorova K A, Cataluna M A, Krestnikov I, Livshits D and Rafailov E U 2010 Opt. Express 18 19438
[31] Tang N Y, Chen X S and Lu W 2005 Acta Phys. Sin. 54 5855 (in Chinese)
[32] Lü Z D, Li Q, Xu J Z, Zheng B Z, Xu Z Y and Ge W K 1999 Acta Phys. Sin. 48 744 (in Chinese)
[33] Jiang W H, Xu H Z, Gong Q, Xu B, Wang J Z, Zhou W, Liang J B and Wang Z G 1999 Acta Phys. Sin. 48 1541 (in Chinese)
[34] Grundmann M, Stier O, Bognár S, Ribbat C, Heinrichsdorff F and Bimberg D 2000 Phys. Stat. Sol. A 178 255
[35] Lin C F and Juang C S 1996 IEEE Photon. Technol. Lett. 8 206
[36] Mitsuru S, Kohki M and Hajime S 1997 Appl. Phys. Lett. 71 2791
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[5] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[6] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[7] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[8] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[9] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[10] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[11] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[12] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[13] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
No Suggested Reading articles found!