Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 027304    DOI: 10.1088/1674-1056/20/2/027304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Characterization of Al2O3/GaN/AlGaN/GaN metal–insulator–semiconductor high electron mobility transistors with different gate recess depths

Ma Xiao-Hua(马晓华)a)b)†, Pan Cai-Yuan(潘才渊) a), Yang Li-Yuan(杨丽媛)b), Yu Hui-You(于惠游)a), Yang Ling(杨凌)b), Quan Si(全思)b), Wang Hao(王昊)b), Zhang Jin-Cheng(张进成) b), and Hao Yue(郝跃)b)
a School of Technical Physics, Xidian University, Xi'an 710071, China; b Key Laboratory for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  In this paper, in order to solve the interface-trap issue and enhance the transconductance induced by high-k dielectric in metal--insulator--semiconductor (MIS) high electron mobility transistors (HEMTs), we demonstrate better performances of recessed-gate Al2O3 MIS-HEMTs which are fabricated by Fluorine-based Si3N4 etching and chlorine-based AlGaN etching with three etching times (15 s, 17 s and 19 s). The gate leakage current of MIS-HEMT is about three orders of magnitude lower than that of AlGaN/GaN HEMT. Through the recessed-gate etching, the transconductance increases effectively. When the recessed-gate depth is 1.02 nm, the best interface performance with $\tau$it=(0.20-1.59) μs and Dit=(0.55-1.08)×1012 cm-2·eV-1 can be obtained. After chlorine-based etching, the interface trap density reduces considerably without generating any new type of trap. The accumulated chlorine ions and the N vacancies in the AlGaN surface caused by the plasma etching can degrade the breakdown and the high frequency performances of devices. By comparing the characteristics of recessed-gate MIS-HEMTs with different etching times, it is found that a low power chlorine-based plasma etching for a short time (15 s in this paper) can enhance the performances of MIS-HEMTs effectively.
Keywords:  AlGaN/GaN gate-recessed MIS-HEMT      frequency-dependent capacitance and conductance      drain current injection technique      knee resistance  
Received:  14 August 2010      Revised:  20 October 2010      Accepted manuscript online: 
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.61.Ey (III-V semiconductors)  
  78.30.Fs (III-V and II-VI semiconductors)  
Fund: Project supported by the National Key Science and Technology Special Project, China (Grant No. 2008ZX01002-002), and the National Natural Science Foundation of China (Grant No. 60736033).

Cite this article: 

Ma Xiao-Hua(马晓华), Pan Cai-Yuan(潘才渊), Yang Li-Yuan(杨丽媛), Yu Hui-You(于惠游), Yang Ling(杨凌), Quan Si(全思), Wang Hao(王昊), Zhang Jin-Cheng(张进成), and Hao Yue(郝跃) Characterization of Al2O3/GaN/AlGaN/GaN metal–insulator–semiconductor high electron mobility transistors with different gate recess depths 2011 Chin. Phys. B 20 027304

[1] Khan M A, Bhattarai A, Kuznia J N and Olson D T 1993 Appl. Phys. Lett. 63 1214
[2] Wu Y F, Keller B P, Keller S, Kapolnek D, Denbaars S P and Mishra U K 1996 IEEE Electron. Device Lett. 17 455
[3] Green B M, Chu K K, Chumbes E M, Smart J A, Shealy J R and Eastman L F 2000 IEEE Electron. Device Lett. 21 268
[4] Zhang N Q, Keller S, Parish G, Heikman S, DenBaars S P and Mishra U K 2000 IEEE Electron. Device Lett. 21 421
[5] Ando Y, Okamoto Y, Miyamoto H, Nakayama T, Inoue T and Kuzuhara M 2003 IEEE Electron. Device Lett. 24 289
[6] Chini A, Buttari D, Coffie R, Heikman S, Keller S and Mishra U K 2004 IEEE Electron. Lett. 40 73
[7] Wu Y F, Sazler A, Moore M, Smith R P, Sheppard S Chavarkar P M and Mishra U K 2004 IEEE Electron. Device Lett. 25 117
[8] Wu Y F, Moore M, Saxler A, Wisleder T and Parikh P 2006 Proc. 64th Device Research Conference p. 151
[9] Yang L, Hu G Z, Hao Y, Ma X H, Quan S, Yang L Y and Jiang S G 2010 Chin. Phys. B 19 047301
[10] Gu W P, Duan H T, Ni J Y, Hao Y, Zhang J C, Feng Q and Ma X H 2009 Chin. Phys. B 18 1601
[11] Feng Q, Tian Y, Bi Z W, Yue Y Z, Ni J Y, Zhang J C, Hao Y and Yang L A 2009 Chin. Phys. B 18 3014
[12] Egawa T, Ishikawa H, Jimbo T and Umeno M 2000 Appl. Phys. Lett. 76 121
[13] Okita H, Kaifu K, Mita J, Yamada T, Sano Y, Ishikawa H, Egawa T and Jimbo T 2003 Phys. Status Solidi A 200 187
[14] Li C Z, Pang L, Liu X Y, Huang J, Liu J, Zheng Y K and He Z J 2007 Chin. J. Semicond. 28 1777
[15] Cai Y, Zhou Y, Lau K M and Chen K J 2006 IEEE Trans. Electron. Devices 53 2207
[16] Stoklas R, Gregusova D, Novak J, Vescan A and Kordos P 2008 Appl. Phys. Lett. 93 124103
[17] Hashizume T, Ootomo S and Hasegawa H 2003 Appl. Phys. Lett. 83 2952
[18] Bahl S R and Alamo J A 1993 IEEE Trans. Electron. Devices 40 1558
[19] Wang M J and Chen K J 2010 IEEE Trans. Electron. Devices 57 1492
[20] Miller E J, Yu E T, Waltereit P and Speck J S 2004 Appl. Phys. Lett. 84 535
[21] Wu Y F, Keller B P, Keller S, Xu J J, Thibeault B J and Denbaars S P 1999 IEICE Trans. Electron. 82 1895
[22] Jha S K, Leung B H, Surya C, Schweizer H and Pilkhuhn M H 2004 Proc. Optoelectronic and Microelectronic Materials and Device Conference p. 33
[23] Conway A, Li J and Asbeck P 2003 Proc. Int. Semicond. Device Res. Symp. 10--12 Dec. p. 439 endfootnotesize
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[3] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[4] Interface engineering of transition metal dichalcogenide/GaN heterostructures: Modified broadband for photoelectronic performance
Yinlu Gao(高寅露), Kai Cheng(程开), Xue Jiang(蒋雪), and Jijun Zhao(赵纪军). Chin. Phys. B, 2022, 31(11): 117304.
[5] Relationship between the spatial position of the seed and growth mode for single-crystal diamond grown with an enclosed-type holder
Wen-Liang Xie(谢文良), Xian-Yi Lv(吕宪义), Qi-Liang Wang(王启亮), Liu-An Li(李柳暗), and Guang-Tian Zou(邹广田). Chin. Phys. B, 2022, 31(10): 108106.
[6] Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell
Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2022, 31(9): 097301.
[7] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[8] Impact of AlxGa1-xN barrier thickness and Al composition on electrical properties of ferroelectric HfZrO/Al2O3/AlGaN/GaN MFSHEMTs
Yue Li(李跃), Xingpeng Liu(刘兴鹏), Tangyou Sun(孙堂友), Fabi Zhang(张法碧), Tao Fu(傅涛), Peihua Wang-yang(王阳培华), Haiou Li(李海鸥), and Yonghe Chen(陈永和). Chin. Phys. B, 2022, 31(9): 097307.
[9] Effect of anode area on the sensing mechanism of vertical GaN Schottky barrier diode temperature sensor
Ji-Yao Du(都继瑶), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(4): 047701.
[10] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[11] A 4H-SiC merged P-I-N Schottky with floating back-to-back diode
Wei-Zhong Chen(陈伟中), Hai-Feng Qin(秦海峰), Feng Xu(许峰), Li-Xiang Wang(王礼祥), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(2): 028503.
[12] Distribution of donor states on the surfaceof AlGaN/GaN heterostructures
Yue-Bo Liu(柳月波), Hong-Hui Liu(刘红辉), Jun-Yu Shen(沈俊宇), Wan-Qing Yao(姚婉青), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(12): 128102.
[13] Comparison of resonant tunneling diodes grown on freestanding GaN substrates and sapphire substrates by plasma-assisted molecular-beam epitaxy
Xiang-Peng Zhou(周祥鹏), Hai-Bing Qiu(邱海兵), Wen-Xian Yang(杨文献), Shu-Long Lu(陆书龙), Xue Zhang(张雪), Shan Jin(金山), Xue-Fei Li(李雪飞), Li-Feng Bian(边历峰), and Hua Qin(秦华). Chin. Phys. B, 2021, 30(12): 127301.
[14] Abnormal phenomenon of source-drain current of AlGaN/GaN heterostructure device under UV/visible light irradiation
Yue-Bo Liu(柳月波), Jun-Yu Shen(沈俊宇), Jie-Ying Xing(邢洁莹), Wan-Qing Yao(姚婉青), Hong-Hui Liu(刘红辉), Ya-Qiong Dai(戴雅琼), Long-Kun Yang(杨隆坤), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(11): 117302.
[15] Investigation on threshold voltage of p-channel GaN MOSFETs based on p-GaN/AlGaN/GaN heterostructure
Ruo-Han Li(李若晗), Wu-Xiong Fei(费武雄), Rui Tang(唐锐), Zhao-Xi Wu(吴照玺), Chao Duan(段超), Tao Zhang(张涛), Dan Zhu(朱丹), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087305.
No Suggested Reading articles found!