CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Characterization of Al2O3/GaN/AlGaN/GaN metal–insulator–semiconductor high electron mobility transistors with different gate recess depths |
Ma Xiao-Hua(马晓华)a)b)†, Pan Cai-Yuan(潘才渊) a), Yang Li-Yuan(杨丽媛)b), Yu Hui-You(于惠游)a), Yang Ling(杨凌)b), Quan Si(全思)b), Wang Hao(王昊)b), Zhang Jin-Cheng(张进成) b), and Hao Yue(郝跃)b) |
a School of Technical Physics, Xidian University, Xi'an 710071, China; b Key Laboratory for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China |
|
|
Abstract In this paper, in order to solve the interface-trap issue and enhance the transconductance induced by high-k dielectric in metal--insulator--semiconductor (MIS) high electron mobility transistors (HEMTs), we demonstrate better performances of recessed-gate Al2O3 MIS-HEMTs which are fabricated by Fluorine-based Si3N4 etching and chlorine-based AlGaN etching with three etching times (15 s, 17 s and 19 s). The gate leakage current of MIS-HEMT is about three orders of magnitude lower than that of AlGaN/GaN HEMT. Through the recessed-gate etching, the transconductance increases effectively. When the recessed-gate depth is 1.02 nm, the best interface performance with $\tau$it=(0.20-1.59) μs and Dit=(0.55-1.08)×1012 cm-2·eV-1 can be obtained. After chlorine-based etching, the interface trap density reduces considerably without generating any new type of trap. The accumulated chlorine ions and the N vacancies in the AlGaN surface caused by the plasma etching can degrade the breakdown and the high frequency performances of devices. By comparing the characteristics of recessed-gate MIS-HEMTs with different etching times, it is found that a low power chlorine-based plasma etching for a short time (15 s in this paper) can enhance the performances of MIS-HEMTs effectively.
|
Received: 14 August 2010
Revised: 20 October 2010
Accepted manuscript online:
|
PACS:
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
73.61.Ey
|
(III-V semiconductors)
|
|
78.30.Fs
|
(III-V and II-VI semiconductors)
|
|
Fund: Project supported by the National Key Science and Technology Special Project, China (Grant No. 2008ZX01002-002), and the National Natural Science Foundation of China (Grant No. 60736033). |
Cite this article:
Ma Xiao-Hua(马晓华), Pan Cai-Yuan(潘才渊), Yang Li-Yuan(杨丽媛), Yu Hui-You(于惠游), Yang Ling(杨凌), Quan Si(全思), Wang Hao(王昊), Zhang Jin-Cheng(张进成), and Hao Yue(郝跃) Characterization of Al2O3/GaN/AlGaN/GaN metal–insulator–semiconductor high electron mobility transistors with different gate recess depths 2011 Chin. Phys. B 20 027304
|
[1] |
Khan M A, Bhattarai A, Kuznia J N and Olson D T 1993 Appl. Phys. Lett. 63 1214
|
[2] |
Wu Y F, Keller B P, Keller S, Kapolnek D, Denbaars S P and Mishra U K 1996 IEEE Electron. Device Lett. 17 455
|
[3] |
Green B M, Chu K K, Chumbes E M, Smart J A, Shealy J R and Eastman L F 2000 IEEE Electron. Device Lett. 21 268
|
[4] |
Zhang N Q, Keller S, Parish G, Heikman S, DenBaars S P and Mishra U K 2000 IEEE Electron. Device Lett. 21 421
|
[5] |
Ando Y, Okamoto Y, Miyamoto H, Nakayama T, Inoue T and Kuzuhara M 2003 IEEE Electron. Device Lett. 24 289
|
[6] |
Chini A, Buttari D, Coffie R, Heikman S, Keller S and Mishra U K 2004 IEEE Electron. Lett. 40 73
|
[7] |
Wu Y F, Sazler A, Moore M, Smith R P, Sheppard S Chavarkar P M and Mishra U K 2004 IEEE Electron. Device Lett. 25 117
|
[8] |
Wu Y F, Moore M, Saxler A, Wisleder T and Parikh P 2006 Proc. 64th Device Research Conference p. 151
|
[9] |
Yang L, Hu G Z, Hao Y, Ma X H, Quan S, Yang L Y and Jiang S G 2010 Chin. Phys. B 19 047301
|
[10] |
Gu W P, Duan H T, Ni J Y, Hao Y, Zhang J C, Feng Q and Ma X H 2009 Chin. Phys. B 18 1601
|
[11] |
Feng Q, Tian Y, Bi Z W, Yue Y Z, Ni J Y, Zhang J C, Hao Y and Yang L A 2009 Chin. Phys. B 18 3014
|
[12] |
Egawa T, Ishikawa H, Jimbo T and Umeno M 2000 Appl. Phys. Lett. 76 121
|
[13] |
Okita H, Kaifu K, Mita J, Yamada T, Sano Y, Ishikawa H, Egawa T and Jimbo T 2003 Phys. Status Solidi A 200 187
|
[14] |
Li C Z, Pang L, Liu X Y, Huang J, Liu J, Zheng Y K and He Z J 2007 Chin. J. Semicond. 28 1777
|
[15] |
Cai Y, Zhou Y, Lau K M and Chen K J 2006 IEEE Trans. Electron. Devices 53 2207
|
[16] |
Stoklas R, Gregusova D, Novak J, Vescan A and Kordos P 2008 Appl. Phys. Lett. 93 124103
|
[17] |
Hashizume T, Ootomo S and Hasegawa H 2003 Appl. Phys. Lett. 83 2952
|
[18] |
Bahl S R and Alamo J A 1993 IEEE Trans. Electron. Devices 40 1558
|
[19] |
Wang M J and Chen K J 2010 IEEE Trans. Electron. Devices 57 1492
|
[20] |
Miller E J, Yu E T, Waltereit P and Speck J S 2004 Appl. Phys. Lett. 84 535
|
[21] |
Wu Y F, Keller B P, Keller S, Xu J J, Thibeault B J and Denbaars S P 1999 IEICE Trans. Electron. 82 1895
|
[22] |
Jha S K, Leung B H, Surya C, Schweizer H and Pilkhuhn M H 2004 Proc. Optoelectronic and Microelectronic Materials and Device Conference p. 33
|
[23] |
Conway A, Li J and Asbeck P 2003 Proc. Int. Semicond. Device Res. Symp. 10--12 Dec. p. 439 endfootnotesize
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|