|
|
Distribution of non-Markovian intervals for open qubit systems |
Zheng Yan-Ping(郑艳萍), Tang Ning(唐宁), Wang Guo-You(王国友), and Zeng Hao-Sheng(曾浩生) |
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081, China |
|
|
Abstract We study the non-Markovianity of open qubit systems using the measure $\mathscr{N}$ proposed by Breuer, Laine and Piilo [Phys. Rev. Lett. 103 210401 (2009)]. We find that for the three types of quantum noises, amplitude-damping, dephasing and depolarizing noises, there exist some non-Markovian time intervals whose distribution is independent of the selection of the pair of initial states. Therefore, the maximization in the definition of measure $\mathscr{N}$ can be actually removed without influencing the detection of non-Markovianity.
|
Received: 20 May 2011
Revised: 29 June 2011
Accepted manuscript online:
|
PACS:
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
42.50.Lc
|
(Quantum fluctuations, quantum noise, and quantum jumps)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11075050), the National Key Basic Research
Program of China (Grant No. 2007CB925204), and the Construct Program of the National Key Discipline Ministry of Education
of China. |
Cite this article:
Zheng Yan-Ping(郑艳萍), Tang Ning(唐宁), Wang Guo-You(王国友), and Zeng Hao-Sheng(曾浩生) Distribution of non-Markovian intervals for open qubit systems 2011 Chin. Phys. B 20 110301
|
[1] |
Breuer H P and Petruccione F 2007 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
|
[2] |
Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401
|
[3] |
Laine E M, Piilo J and Breuer H P 2010 Phys. Rev. A 81 062115
|
[4] |
Dijkstra A G and Tanimura Y 2010 Phys. Rev. Lett. 104 250401
|
[5] |
Bellomo B, Lo Franco R and Compagno G 2007 Phys. Rev. Lett. 99 160502
|
[6] |
Huang L Y and Fang M F 2010 Chin. Phys. B 19 090318
|
[7] |
Kubota Y and Nobusada K 2009 J. Phys. Soc. Jpn. 78 114603
|
[8] |
Ji Y H and Hu J J 2010 Chin. Phys. B 19 060304
|
[9] |
Kane B E 1998 Nature 393 133
|
[10] |
Shao J 2004 J. Chem. Phys. 120 5053
|
[11] |
Chin A W, Datta A, Caruso F, Huelga S F and Plenio M B 2010 New J. Phys. 12 065002
|
[12] |
Rivas A, Huelga S F and Plenio M B 2010 Phys. Rev. Lett. 105 050403
|
[13] |
Wolf M, Eisert J, Cubitt T S and Cirac J I 2008 Phys. Rev. Lett. 101 150402
|
[14] |
Usha Devi A R, Rajagopal A K and Sudha 2011 Phys. Rev. A 83 022109
|
[15] |
Lu X M, Wang X G and Sun C P 2010 Phys. Rev. A 82 042103
|
[16] |
Breuer H P and Vacchini B 2008 Phys. Rev. Lett. 101 140402
|
[17] |
Shabani A and Lidar D A 2009 Phys. Rev. Lett. 102 100402
|
[18] |
Breuer H P and Vacchini B 2009 Phys. Rev. E 79 041147
|
[19] |
Haikka P and Maniscalco S 2010 Phys. Rev. A 81 052103
|
[20] |
Chang K W and Law C K 2010 Phys. Rev. A 81 052105
|
[21] |
Krovi H, Oreshkov O, Ryazanov M and Lidar D A 2007 Phys. Rev. A 76 052117
|
[22] |
Chru'sci'nski D, Kossakowski A and Pascazio S 2010 Phys. Rev. A 81 032101
|
[23] |
Haikka P, Cresser J D and Maniscalco S 2011 Phys. Rev. A 83 012112
|
[24] |
Ding B F, Wang X Y, Tang Y F, Mi X W and Zhao H P 2011 Chin. Phys. B 20 060304
|
[25] |
Jing J and Yu T 2010 Phys. Rev. Lett. 105 240403
|
[26] |
Koch W, Grossmann F and Tannor D J 2010 Phys. Rev. Lett. 105 230405
|
[27] |
Xu J S, Li C F, Gong M, Zou X B, Shi C H, Chen G and Guo G C 2010 Phys. Rev. Lett. 104 100502
|
[28] |
Xu J S, Li C F, Zhang C J, Xu X Y, Zhang Y S and Guo G C 2010 Phys. Rev. A 82 042328
|
[29] |
Xu Z Y, Yang W L and Feng M 2010 Phys. Rev. A 81 044105
|
[30] |
He Z, Zou J, Li L and Shao B 2011 Phys. Rev. A 83 012018
|
[31] |
Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
|
[32] |
Daffer S, Wodkiewicz K, Cresser J D and McIver J K 2004 Phys. Rev. A 70 010304(R)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|