|
|
Controlling transfer of quantum correlations among bi-partitions of a composite quantum system by combining different noisy environments |
Zhang Xiu-Xing(张修兴) and Li Fu-Li(李福利)† |
Department of Applied Physics, Xi'an Jiaotong University, Xi'an 710049, China |
|
|
Abstract The correlation dynamics are investigated for various bi-partitions of a composite quantum system consisting of two qubits and two independent and non-identical noisy environments. The two qubits have no direct interaction with each other and locally interact with their environments. Classical and quantum correlations including the entanglement are initially prepared only between the two qubits. We find that contrary to the identical noisy environment case, the quantum correlation transfer direction can be controlled by combining different noisy environments. The amplitude-damping environment determines whether there exists the entanglement transfer among bi-partitions of the system. When one qubit is coupled to an amplitude-damping environment and the other one to a bit-flip one, we find a very interesting result that all the quantum and the classical correlations, and even the entanglement, originally existing between the qubits, can be completely transferred without any loss to the qubit coupled to the bit-flit environment and the amplitude-damping environment. We also notice that it is possible to distinguish the quantum correlation from the classical correlation and the entanglement by combining different noisy environments.
|
Received: 29 January 2011
Revised: 06 May 2011
Accepted manuscript online:
|
PACS:
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
03.67.-a
|
(Quantum information)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB923102), the Special Prophase Project
on the National Basic Research Program of China (Grant No. 2011CB311807), and the National Natural Science Foundation of
China (Grand No. 11074199). |
Cite this article:
Zhang Xiu-Xing(张修兴) and Li Fu-Li(李福利) Controlling transfer of quantum correlations among bi-partitions of a composite quantum system by combining different noisy environments 2011 Chin. Phys. B 20 110302
|
[1] |
Neilsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
|
[2] |
Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
|
[3] |
Henderson L and Vedral V 2011 J. Phys. A 34 68899
|
[4] |
Vedral V 2003 Phys. Rev. Lett. 90 050401
|
[5] |
Lanyon B P, Barbieri M, Almeida M P and White A G 2008 Phys. Rev. Lett. 101 200501
|
[6] |
Knill E and Laflamme R 1992 Phys. Rev. Lett. 81 5672
|
[7] |
Oppenheim J, Horodecki M, Horodecki P and Horodecki R 2002 Phys. Rev. Lett. 89 180402
|
[8] |
Groisman B, Popescu S and Winter A 2005 Phys. Rev. A 72 032317
|
[9] |
Luo S 2008 Phys. Rev. A 77 022301
|
[10] |
Modi K, Paterek T, Son W, Vedral V and Williamson M 2010 Phys. Rev. Lett. 104 080501
|
[11] |
Chen Q Y, Fang M F, Xiao X and Zhou X F 2011 Chin. Phys. B 20 050302
|
[12] |
Wang L C, Yan J Y and Yi X X 2011 Chin. Phys. B 20 040305
|
[13] |
Maziero J, Céleri L C, Serra R M and Vedral V 2009 Phys. Rev. A 80 044102
|
[14] |
Mazhar Ali, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
|
[15] |
Dillenschneider R 2008 Phys. Rev. B 78 224413
|
[16] |
Sarandy M S 2009 Phys. Rev. A 80 022108
|
[17] |
Werlang T and Rigolin G 2010 Phys. Rev. A 81 044101
|
[18] |
Werlang T, Trippe C, Ribeiro G A P and Rigolin G 2010 Phys. Rev. Lett. 105 095702
|
[19] |
Sun Z Y, Li L, Yao K L, Du G H, Liu J W, Luo B, Li N and Li H N 2010 Phys. Rev. A 82 032310
|
[20] |
Giorda P and Paris M G A 2010 Phys. Rev. Lett. 105 020503
|
[21] |
Adesso G and Datta A 2010 Phys. Rev. Lett. 105 030501
|
[22] |
Werlang T, Souza S, Fanchini F F and Villas Boas C J 2009 Phys. Rev. A 80 024103
|
[23] |
Fanchini F F, Werlang T, Brasil C A, Arruda L G E and Caldeira A O 2010 Phys. Rev. A 81 052107
|
[24] |
Mazzola L, Piilo J and Maniscalco S 2010 arXiv: 1006.1805
|
[25] |
Mazzola L, Piilo J and Maniscalco S 2010 Phys. Rev. Lett. 104 200401
|
[26] |
Céleri L C, Landulfo A G S, Serra R M and Matsas G E A 2010 Phys. Rev. A 81 062130
|
[27] |
Fanchini F F, Castelano L K and Caldeira A O 2010 New J. Phys. 12 073009
|
[28] |
Maziero J, Werlang T, Fanchini F F, Céleri L C and Serra R M 2010 Phys. Rev. A 81 022116
|
[29] |
Xu J S, Xu X Y, Li C F, Zhang C J, Zou X B and Guo G C 2010 Nat. Commun. 1 7
|
[30] |
Xu J S, Li C F, Zhang C J, Xu X Y, Zhang Y S and Guo G C 2010 Phys. Rev. A 82 042328
|
[31] |
Soares-Pinto D O, Céleri L C, Auccaise R, Fanchini F F, de Azevedo E R, Maziero J, Bonagamba T J and Serra R M 2010 Phys. Rev. A 81 062118
|
[32] |
López C E, Romero G, Lastra F, Solano E and Retamal J C 2008 Phys. Rev. Lett. 101 080503
|
[33] |
Groisman B, Popescu S and Winter A 2005 Phys. Rev. A 72 032317
|
[34] |
Schumacher B and Westmorel M D 2006 Phys. Rev. A 74 042305
|
[35] |
Terhal B M, Horodecki M, Leung D W and DiVincenzo D P 2002 J. Math. Phys. 43 4286
|
[36] |
DiVincenzo D P, Horodecki M, Leung D W, Smolin J A and Terhal B M 2004 Phys. Rev. Lett. 92 067902
|
[37] |
Piani M, Horodecki P and Horodecki R 2008 Phys. Rev. Lett. 100 090502
|
[38] |
Piani M, Christandl M, Mora C E and Horodecki P 2009 Phys. Rev. Lett. 102 250503
|
[39] |
Leung D W 2003 J. Math. Phys. 44 528
|
[40] |
Salles A, de Melo F, Almeida M P, Hor-Meyll M, Walborn S P, Souto Ribeiro P H and Davidovich L 2008 Phys. Rev. A 78 022322
|
[41] |
Wootters W K 1998 Phys. Rev. Lett. 80 2245
|
[42] |
Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
|
[43] |
Yu T and Eberly J H 2006 Phys. Rev. Lett. 96 140403
|
[44] |
Yu T and Eberly J H 2009 Science 323 598
|
[45] |
Stepanenko D, Burkard G, Giedke G and Imamoglu A 2006 Phys. Rev. Lett. 96 136401
|
[46] |
Lai C W, Maletinsky P, Badolato A and Imamoglu A 2006 Phys. Rev. Lett. 96 167403
|
[47] |
Scala M, Migliore R and Messina A 2008 J. Phys. A 41 435304
|
[48] |
Rossini D and Calarco T 2007 Phys. Rev. A 75 032333
|
[49] |
Cai J M, Zhou Z W and Guo G C 2005 Phys. Rev. A 72 022312
|
[50] |
Duan L M, Demler E and Lukin M D 2003 Phys. Rev. Lett. 9 090402
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|