Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 070303    DOI: 10.1088/1674-1056/28/7/070303
GENERAL Prev   Next  

Influence of homodyne-based feedback control on the entropic uncertainty in open quantum system

Juju Hu(胡菊菊)1,2, Qin Xue(薛琴)1,2
1 College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, China;
2 Key Laboratory of Photoelectronics and Telecommunication of Jiangxi Province, Nanchang 330022, China
Abstract  

For an open quantum system containing two qubits under homodyne-based feedback control, we investigate the dynamical behaviors of quantum-memory-assisted entropic uncertainty. Moreover, we analyze the influence of feedback modes and coefficients on the entropic uncertainty. Numerical investigations show that the memory qubit should be placed in a non-dissipative channel if the single dissipative channel condition can be chosen, which helps reduce the entropic uncertainty of the system. For the homodyne feedback control F=λσx (or F=λσy), due to different roles of the entangled qubits A and B, when they are subject to feedback control with different feedback coefficients λ, the exchange of feedback coefficients will cause variations of the entropic uncertainty. When the feedback coefficient corresponding to the memory qubit B is larger (λB>λA), the steady value of the entropic uncertainty will be small, which is conducive to enhancing the robustness of the system. However, for the feedback control F=λσz, the difference between the feedback coefficients has no effect on the steady values of the entropic uncertainty.

Keywords:  homodyne-based feedback control      quantum-memory-assisted entropic uncertainties      memory qubit      open quantum system  
Received:  21 March 2019      Revised:  14 May 2019      Accepted manuscript online: 
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  05.40.Ca (Noise)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61663016 and 11404150).

Corresponding Authors:  Juju Hu     E-mail:  hjj2006@jxnu.edu.cn,jxnuhjj@126.com

Cite this article: 

Juju Hu(胡菊菊), Qin Xue(薛琴) Influence of homodyne-based feedback control on the entropic uncertainty in open quantum system 2019 Chin. Phys. B 28 070303

[34] Viola L and Lloyd S 1998 Phys. Rev. A 58 2733
[1] Heisenberg W 1927 Z. Phys. 43 172
[35] Katz G, Ratner M A and Kosloff R 2007 Phys. Rev. Lett. 98 203006
[2] Hirschman I I 1957 Amer J. Math. 79 152
[36] Ganesan N and Tarn T J 2007 Phys. Rev. A 75 032323
[3] Deutsch D 1983 Phys. Rev. Lett. 50 631
[37] Shao X Q, Wang Z H, Liu H D and Yi X X 2016 Phys. Rev. A 94 032307
[4] Bialynicki-Birula I 1984 Phys. Lett. A 103 253
[38] Li J G, Zou J, Shao B and Cai J F 2008 Phys. Rev. A 77 012339
[5] Maassen H and Uffink J B M 1988 Phys. Rev. Lett. 60 1103
[39] Zheng Q, Ge L, Yao Y and Zhi Q J 2015 Phys. Rev. A 91 033805
[6] Renes J M and Boileau J C 2009 Phys. Rev. Lett. 103 020402
[40] Shuzhi Sam Ge, Thanh Long Vu and Chang Chieh Hang 2012 Automatica 48 1031
[7] Berta M, Christandl M, Colbeck R, Renes J M and Renner R 2010 Nat. Phys. 6 659
[41] Thanh Long Vu, Shuzhi Sam Ge and Chang Chieh Hang 2012 Phys. Rev. A 85 012332
[8] Xu Z Y, Zhu S Q and Yang W L 2012 Appl. Phys. Lett. 101 244105
[42] Li Y, Luo B and Guo H 2011 Phys. Rev. A 84 012316
[9] Prevedel R, Hamel D R, Colbeck R, Fisher K and Resch K J 2011 Nat. Phys. 7 757
[43] Bellomo B, Franco R L and Compagno G 2007 Phys. Rev. Lett. 99 160502
[10] Li C F, Xu J S, Xu X Y, Li K and Guo G C 2011 Nat. Phys. 7 752
[44] Ji Y H, Ke Q and Hu J J 2018 Chin. Phys. B 27 100302
[11] Mondal D, Bagchi S and Pati A K 2017 Phys. Rev. A 95 052117
[45] Ji Y H, Ke Q and Hu J J 2019 Int. J. Theor. Phys. 58 403
[12] Riccardi A, Macchiavello C and Maccone L 2017 Phys. Rev. A 95 032109
[13] Wang D, Huang A J, Hoehn R D, Ming F, Sun W Y, Shi J D, Ye L and Kais S 2017 Sci. Rep. 7 1066
[14] Ming F, Wang D, Huang A J, Sun W Y and Ye L 2018 Quantum Inf. Process 17 89
[15] Karpat G, Piilo J and Maniscalco S 2015 Eur. Phys. Lett. 111 50006
[16] Bai X M, Wang N, Li J Q and Liang J Q 2016 Quantum Inf. Process. 15 2771
[17] Zhang S Y, Fang M F, Zhang Y L, Guo Y N, Zhao Y J and Tang W W 2015 Chin. Phys. B 24 090304
[18] Chen M N, Wang D and Ye L 2019 Phys. Lett. A 383 977
[19] Yang Y Y, Sun W Y, Shi W N, Ming F, Wang D and Ye L 2019 Front. Phys. 14 31601
[20] Hu M L and Fan H 2012 Phys. Rev. A 86 032338
[21] Pati A K, Wilde M M, Devi A R U, Rajagopal A K and Sudha X X 2012 Phys. Rev. A 86 042105
[22] Li J Q, Bai L and Liang J Q 2018 Quantum Inf. Process. 17 206
[23] Yu C S 2017 Phys. Rev. A 95 042337
[24] Liu X M, Cheng W W and Liu J M 2016 Sci. Rep. 6 19359
[25] Liu X M, Du Z Z and Liu J M 2016 Quantum Inform. Process 15 1793
[26] Dupuis F, Fawzi O and Wehner S 2015 IEEE Trans. Inf. Theory 61 1093
[27] Grosshans F and Cerf N J 2004 Phys. Rev. Lett. 92 047905
[28] Vallone G, Marangon D G, Tomasin M and Villoresi P 2014 Phys. Rev. A 90 052327
[29] Sun W M, Su S L, Jin Z, Liang Y, Zhu A D, Wang H F and Zhang S 2015 J. Opt. Soc. Am. B 32 1873
[30] Chen L, Wang H F and Zhang S 2013 J. Opt. Soc. Am. B 30 475
[31] Yang Y, Gong B L and Cui W 2018 Phys. Rev. A 97 012119
[32] Wiseman H M and Milburn G J 1993 Phys. Rev. Lett. 70 548
[33] Wiseman H M 1994 Phys. Rev. A 49 2133
[34] Viola L and Lloyd S 1998 Phys. Rev. A 58 2733
[35] Katz G, Ratner M A and Kosloff R 2007 Phys. Rev. Lett. 98 203006
[36] Ganesan N and Tarn T J 2007 Phys. Rev. A 75 032323
[37] Shao X Q, Wang Z H, Liu H D and Yi X X 2016 Phys. Rev. A 94 032307
[38] Li J G, Zou J, Shao B and Cai J F 2008 Phys. Rev. A 77 012339
[39] Zheng Q, Ge L, Yao Y and Zhi Q J 2015 Phys. Rev. A 91 033805
[40] Shuzhi Sam Ge, Thanh Long Vu and Chang Chieh Hang 2012 Automatica 48 1031
[41] Thanh Long Vu, Shuzhi Sam Ge and Chang Chieh Hang 2012 Phys. Rev. A 85 012332
[42] Li Y, Luo B and Guo H 2011 Phys. Rev. A 84 012316
[43] Bellomo B, Franco R L and Compagno G 2007 Phys. Rev. Lett. 99 160502
[44] Ji Y H, Ke Q and Hu J J 2018 Chin. Phys. B 27 100302
[45] Ji Y H, Ke Q and Hu J J 2019 Int. J. Theor. Phys. 58 403
[1] Geometric phase under the Unruh effect with intermediate statistics
Jun Feng(冯俊), Jing-Jun Zhang(张精俊), and Qianyi Zhang(张倩怡). Chin. Phys. B, 2022, 31(5): 050312.
[2] Dynamical learning of non-Markovian quantum dynamics
Jintao Yang(杨锦涛), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力). Chin. Phys. B, 2022, 31(1): 010314.
[3] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[4] Fine-grained uncertainty relation for open quantum system
Shang-Bin Han(韩尚斌), Shuai-Jie Li(李帅杰), Jing-Jun Zhang(张精俊), and Jun Feng(冯俊). Chin. Phys. B, 2021, 30(6): 060315.
[5] Application of non-Hermitian Hamiltonian model in open quantum optical systems
Hong Wang(王虹), Yue Qin(秦悦), Jingxu Ma(马晶旭), Heng Shen(申恒), Ying Hu(胡颖), and Xiaojun Jia(贾晓军). Chin. Phys. B, 2021, 30(5): 050301.
[6] Optimal parameter estimation of open quantum systems
Yinghua Ji(嵇英华), Qiang Ke(柯强), and Juju Hu(胡菊菊). Chin. Phys. B, 2020, 29(12): 120303.
[7] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[8] Dynamical control of population and entanglement for open Λ-type atoms by engineering the environment
Xiao-Lan Wang(王晓岚), Yu-Kun Ren(任玉坤), Hao-Sheng Zeng(曾浩生). Chin. Phys. B, 2019, 28(3): 030301.
[9] Controlling of entropic uncertainty in open quantum system via proper placement of quantum register
Ying-Hua Ji(嵇英华), Qiang Ke(柯强), Ju-Ju Hu(胡菊菊). Chin. Phys. B, 2018, 27(10): 100302.
[10] Nonlinear dissipative dynamics of a two-component atomic condensate coupling with a continuum
Zhong Hong-Hua (钟宏华), Xie Qiong-Tao (谢琼涛), Xu Jun (徐军), Hai Wen-Hua (海文华), Li Chao-Hong (李朝红). Chin. Phys. B, 2014, 23(2): 020314.
[11] Comparison between non-Markovian dynamics with and without rotating wave approximation
Tang Ning (唐宁), Xu Tian-Tian (徐甜甜), Zeng Hao-Sheng (曾浩生). Chin. Phys. B, 2013, 22(3): 030304.
[12] Distribution of non-Markovian intervals for open qubit systems
Zheng Yan-Ping(郑艳萍), Tang Ning(唐宁), Wang Guo-You(王国友), and Zeng Hao-Sheng(曾浩生) . Chin. Phys. B, 2011, 20(11): 110301.
No Suggested Reading articles found!