|
|
Influence of homodyne-based feedback control on the entropic uncertainty in open quantum system |
Juju Hu(胡菊菊)1,2, Qin Xue(薛琴)1,2 |
1 College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, China;
2 Key Laboratory of Photoelectronics and Telecommunication of Jiangxi Province, Nanchang 330022, China |
|
|
Abstract For an open quantum system containing two qubits under homodyne-based feedback control, we investigate the dynamical behaviors of quantum-memory-assisted entropic uncertainty. Moreover, we analyze the influence of feedback modes and coefficients on the entropic uncertainty. Numerical investigations show that the memory qubit should be placed in a non-dissipative channel if the single dissipative channel condition can be chosen, which helps reduce the entropic uncertainty of the system. For the homodyne feedback control F=λσx (or F=λσy), due to different roles of the entangled qubits A and B, when they are subject to feedback control with different feedback coefficients λ, the exchange of feedback coefficients will cause variations of the entropic uncertainty. When the feedback coefficient corresponding to the memory qubit B is larger (λB>λA), the steady value of the entropic uncertainty will be small, which is conducive to enhancing the robustness of the system. However, for the feedback control F=λσz, the difference between the feedback coefficients has no effect on the steady values of the entropic uncertainty.
|
Received: 21 March 2019
Revised: 14 May 2019
Accepted manuscript online:
|
PACS:
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
05.40.Ca
|
(Noise)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61663016 and 11404150). |
Corresponding Authors:
Juju Hu
E-mail: hjj2006@jxnu.edu.cn,jxnuhjj@126.com
|
Cite this article:
Juju Hu(胡菊菊), Qin Xue(薛琴) Influence of homodyne-based feedback control on the entropic uncertainty in open quantum system 2019 Chin. Phys. B 28 070303
|
[34] |
Viola L and Lloyd S 1998 Phys. Rev. A 58 2733
|
[1] |
Heisenberg W 1927 Z. Phys. 43 172
|
[35] |
Katz G, Ratner M A and Kosloff R 2007 Phys. Rev. Lett. 98 203006
|
[2] |
Hirschman I I 1957 Amer J. Math. 79 152
|
[36] |
Ganesan N and Tarn T J 2007 Phys. Rev. A 75 032323
|
[3] |
Deutsch D 1983 Phys. Rev. Lett. 50 631
|
[37] |
Shao X Q, Wang Z H, Liu H D and Yi X X 2016 Phys. Rev. A 94 032307
|
[4] |
Bialynicki-Birula I 1984 Phys. Lett. A 103 253
|
[38] |
Li J G, Zou J, Shao B and Cai J F 2008 Phys. Rev. A 77 012339
|
[5] |
Maassen H and Uffink J B M 1988 Phys. Rev. Lett. 60 1103
|
[39] |
Zheng Q, Ge L, Yao Y and Zhi Q J 2015 Phys. Rev. A 91 033805
|
[6] |
Renes J M and Boileau J C 2009 Phys. Rev. Lett. 103 020402
|
[40] |
Shuzhi Sam Ge, Thanh Long Vu and Chang Chieh Hang 2012 Automatica 48 1031
|
[7] |
Berta M, Christandl M, Colbeck R, Renes J M and Renner R 2010 Nat. Phys. 6 659
|
[41] |
Thanh Long Vu, Shuzhi Sam Ge and Chang Chieh Hang 2012 Phys. Rev. A 85 012332
|
[8] |
Xu Z Y, Zhu S Q and Yang W L 2012 Appl. Phys. Lett. 101 244105
|
[42] |
Li Y, Luo B and Guo H 2011 Phys. Rev. A 84 012316
|
[9] |
Prevedel R, Hamel D R, Colbeck R, Fisher K and Resch K J 2011 Nat. Phys. 7 757
|
[43] |
Bellomo B, Franco R L and Compagno G 2007 Phys. Rev. Lett. 99 160502
|
[10] |
Li C F, Xu J S, Xu X Y, Li K and Guo G C 2011 Nat. Phys. 7 752
|
[44] |
Ji Y H, Ke Q and Hu J J 2018 Chin. Phys. B 27 100302
|
[11] |
Mondal D, Bagchi S and Pati A K 2017 Phys. Rev. A 95 052117
|
[45] |
Ji Y H, Ke Q and Hu J J 2019 Int. J. Theor. Phys. 58 403
|
[12] |
Riccardi A, Macchiavello C and Maccone L 2017 Phys. Rev. A 95 032109
|
[13] |
Wang D, Huang A J, Hoehn R D, Ming F, Sun W Y, Shi J D, Ye L and Kais S 2017 Sci. Rep. 7 1066
|
[14] |
Ming F, Wang D, Huang A J, Sun W Y and Ye L 2018 Quantum Inf. Process 17 89
|
[15] |
Karpat G, Piilo J and Maniscalco S 2015 Eur. Phys. Lett. 111 50006
|
[16] |
Bai X M, Wang N, Li J Q and Liang J Q 2016 Quantum Inf. Process. 15 2771
|
[17] |
Zhang S Y, Fang M F, Zhang Y L, Guo Y N, Zhao Y J and Tang W W 2015 Chin. Phys. B 24 090304
|
[18] |
Chen M N, Wang D and Ye L 2019 Phys. Lett. A 383 977
|
[19] |
Yang Y Y, Sun W Y, Shi W N, Ming F, Wang D and Ye L 2019 Front. Phys. 14 31601
|
[20] |
Hu M L and Fan H 2012 Phys. Rev. A 86 032338
|
[21] |
Pati A K, Wilde M M, Devi A R U, Rajagopal A K and Sudha X X 2012 Phys. Rev. A 86 042105
|
[22] |
Li J Q, Bai L and Liang J Q 2018 Quantum Inf. Process. 17 206
|
[23] |
Yu C S 2017 Phys. Rev. A 95 042337
|
[24] |
Liu X M, Cheng W W and Liu J M 2016 Sci. Rep. 6 19359
|
[25] |
Liu X M, Du Z Z and Liu J M 2016 Quantum Inform. Process 15 1793
|
[26] |
Dupuis F, Fawzi O and Wehner S 2015 IEEE Trans. Inf. Theory 61 1093
|
[27] |
Grosshans F and Cerf N J 2004 Phys. Rev. Lett. 92 047905
|
[28] |
Vallone G, Marangon D G, Tomasin M and Villoresi P 2014 Phys. Rev. A 90 052327
|
[29] |
Sun W M, Su S L, Jin Z, Liang Y, Zhu A D, Wang H F and Zhang S 2015 J. Opt. Soc. Am. B 32 1873
|
[30] |
Chen L, Wang H F and Zhang S 2013 J. Opt. Soc. Am. B 30 475
|
[31] |
Yang Y, Gong B L and Cui W 2018 Phys. Rev. A 97 012119
|
[32] |
Wiseman H M and Milburn G J 1993 Phys. Rev. Lett. 70 548
|
[33] |
Wiseman H M 1994 Phys. Rev. A 49 2133
|
[34] |
Viola L and Lloyd S 1998 Phys. Rev. A 58 2733
|
[35] |
Katz G, Ratner M A and Kosloff R 2007 Phys. Rev. Lett. 98 203006
|
[36] |
Ganesan N and Tarn T J 2007 Phys. Rev. A 75 032323
|
[37] |
Shao X Q, Wang Z H, Liu H D and Yi X X 2016 Phys. Rev. A 94 032307
|
[38] |
Li J G, Zou J, Shao B and Cai J F 2008 Phys. Rev. A 77 012339
|
[39] |
Zheng Q, Ge L, Yao Y and Zhi Q J 2015 Phys. Rev. A 91 033805
|
[40] |
Shuzhi Sam Ge, Thanh Long Vu and Chang Chieh Hang 2012 Automatica 48 1031
|
[41] |
Thanh Long Vu, Shuzhi Sam Ge and Chang Chieh Hang 2012 Phys. Rev. A 85 012332
|
[42] |
Li Y, Luo B and Guo H 2011 Phys. Rev. A 84 012316
|
[43] |
Bellomo B, Franco R L and Compagno G 2007 Phys. Rev. Lett. 99 160502
|
[44] |
Ji Y H, Ke Q and Hu J J 2018 Chin. Phys. B 27 100302
|
[45] |
Ji Y H, Ke Q and Hu J J 2019 Int. J. Theor. Phys. 58 403
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|