Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 050312    DOI: 10.1088/1674-1056/ac5d31
RAPID COMMUNICATION Prev   Next  

Geometric phase under the Unruh effect with intermediate statistics

Jun Feng(冯俊), Jing-Jun Zhang(张精俊), and Qianyi Zhang(张倩怡)
School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  Utilizing the geometric phase (GP) acquired in a quantum evolution, we manifest the thermality and quantum nature of the Unruh effect of an accelerating detector. We consider an UDW detector coupling to a conformal field in Minkowski spacetime, whose response spectrum exhibits an intermediate statistics of (1+1) anyon field. We find that comparing to an inertial moving detector, the GP in accelerating frame is modified after the nonunitary evolution of the detector due to the Unruh effect. We show that such modification can distinguish the different thermalizing ways of the detector, which depends on the scaling dimension of the conformal primary field. Finally, we estimate the difference between the GP under the Unruh radiation and that in a thermal bath for a static observer, which reveals the quantum origin of the Unruh effect rather than a conventional thermal noise.
Keywords:  open quantum system      geometric phase      Unruh effect  
Received:  13 March 2022      Revised:  13 March 2022      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  04.62.+v (Quantum fields in curved spacetime)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.12075178) and Natural Science Basic Research Plan in Shaanxi Province of China (Grant No.2018JM1049).
Corresponding Authors:  Jun Feng,E-mail:j.feng@xjtu.edu.cn     E-mail:  j.feng@xjtu.edu.cn
About author:  2022-3-14

Cite this article: 

Jun Feng(冯俊), Jing-Jun Zhang(张精俊), and Qianyi Zhang(张倩怡) Geometric phase under the Unruh effect with intermediate statistics 2022 Chin. Phys. B 31 050312

[1] Pancharatnam S 1956 Proc. Indian Acad. Sci. A 44 247
[2] Aharonov Y and Bohm D 1959 Phys. Rev. 11 485
[3] Berry M V 1984 Proc. Roy. Soc. Lond. A 392 45
[4] Aharonov Y and Anandan J 1987 Phys. Rev. Lett. 58 1593
[5] Samuel J and Bhandari R 1988 Phys. Rev. Lett. 60 2339
[6] Zak J 1989 Phys. Rev. Lett. 62 2747
[7] Simon B 1983 Phys. Rev. Lett. 51 2167
[8] Vedral V 2003 Int. J. Quant. Inf. 1 1
[9] Jain S R and Pati A K 1998 Phys. Rev. Lett. 80 650
[10] Xiao D, Chang M and Niu Q 2010 Rev. Mod. Phys. 82 1959
[11] Kwiat P and Chiao R 1991 Phys. Rev. Lett. 66 588
[12] Hasegawa Y, Zawisky M, Rauch H and Ioffe A 1996 Phys. Rev. A 53 2486
[13] Uhlmann A 1986 Rep. Math. Phys. 24 229
[14] Sjöoqvist E, Pati A K, Ekert A, Anandan J S, Ericsson M, Oi D K L and Vedral V 2000 Phys. Rev. Lett. 85 2845
[15] Singh K, Tong D M, Basu K, Chen J L and Du J F 2003 Phys. Rev. A 67 032106
[16] Tong D M, Sjöqvist E, Kwek L C and Oh C H 2004 Phys. Rev. Lett. 93 080405
[17] Cucchietti F M, Zhang J, Lombardo F C, Villar P I and Laflamme R 2010 Phys. Rev. Lett. 105 240406
[18] Bassi A, Grossardt A and Ulbricht H 2017 Class. Quantum Grav. 34 193002
[19] Martín-Martínez E, Fuentes I and Mann R B 2011 Phys. Rev. Lett. 107 131301
[20] Hu J and Yu H 2012 Phys. Rev. A 85 032105
[21] Bell J S and Leinaas J M 1983 Nucl. Phys. B 212 131
[22] Hu J and Yu H 2014 Phys. Rev. A 89 064101
[23] Hu J and Yu H 2012 J. High Energy Phys. 9 62
[24] Feng J, Zhang Y Z, Gould M D and Fan H 2015 Phys. Lett. B 743 198
[25] Tian Z and Jing J 2013 J. High Energy Phys. 04 109
[26] Jing J, Cao Z, Liu X and Tian Z 2020 Class. Quantum Grav. 37 085001
[27] Liguori A, Mintchev M and Pilo L 2000 Nucl. Phys. B 569 577
[28] Ohya S 2017 Phys. Rev. D 96 045017
[29] Takagi S 1985 Prog. Theor. Phys. 74 142
[30] Arrechea J, Barceló C, Garay L J and García-Moreno G 2021 Phys. Rev. D 104 065004
[31] Benatti F and Floreanini R 2004 Phys. Rev. A 70 012112
[32] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford University Press)
[33] Feng J and Zhang J 2022 Phys. Lett. B 827 136992
[34] Fradkin E S and Palchik M Y 1996 Conformal Quantum Field Theory in D-dimensions (Kluwer, Dordrecht)
[35] Simmons-Duffin D in 2016 TASI 2015 New Frontiers in Fields and Strings, edited by J. Polchinski, P. Vieira and O. DeWolfe (World Scientific Press)
[36] Gorini V, Frigerio A, Verri M, Kossakowski A and Surdarshan E C G 1978 Rep. Math. Phys. 13 149
[37] Gorini V, Kossakowski A and Surdarshan E C G 1976 J. Math. Phys. 17 821
[38] Lindblad G 1976 Commun. Math. Phys. 48 119
[39] Takagi S 1986 Prog. Theor. Phys. Suppl. 88 1
[40] Kollas N K, Moustos D and Blekos K 2020 Phys. Rev. D 102 065020
[1] Relativistic motion on Gaussian quantum steering for two-mode localized Gaussian states
Xiao-Long Gong(龚小龙), Shuo Cao(曹硕), Yue Fang(方越), and Tong-Hua Liu(刘统华). Chin. Phys. B, 2022, 31(5): 050402.
[2] Dynamical learning of non-Markovian quantum dynamics
Jintao Yang(杨锦涛), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力). Chin. Phys. B, 2022, 31(1): 010314.
[3] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[4] Fine-grained uncertainty relation for open quantum system
Shang-Bin Han(韩尚斌), Shuai-Jie Li(李帅杰), Jing-Jun Zhang(张精俊), and Jun Feng(冯俊). Chin. Phys. B, 2021, 30(6): 060315.
[5] Application of non-Hermitian Hamiltonian model in open quantum optical systems
Hong Wang(王虹), Yue Qin(秦悦), Jingxu Ma(马晶旭), Heng Shen(申恒), Ying Hu(胡颖), and Xiaojun Jia(贾晓军). Chin. Phys. B, 2021, 30(5): 050301.
[6] Geometry of time-dependent $\mathcal{PT}$-symmetric quantum mechanics
Da-Jian Zhang(张大剑), Qing-hai Wang(王清海), and Jiangbin Gong(龚江滨). Chin. Phys. B, 2021, 30(10): 100307.
[7] Quantum fluctuation of entanglement for accelerated two-level detectors
Si-Xuan Zhang(张思轩), Tong-Hua Liu(刘统华), Shuo Cao(曹硕), Yu-Ting Liu(刘宇婷), Shuai-Bo Geng(耿率博), Yu-Jie Lian(连禹杰). Chin. Phys. B, 2020, 29(5): 050402.
[8] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[9] Optimal parameter estimation of open quantum systems
Yinghua Ji(嵇英华), Qiang Ke(柯强), and Juju Hu(胡菊菊). Chin. Phys. B, 2020, 29(12): 120303.
[10] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[11] Influence of homodyne-based feedback control on the entropic uncertainty in open quantum system
Juju Hu(胡菊菊), Qin Xue(薛琴). Chin. Phys. B, 2019, 28(7): 070303.
[12] Dynamical control of population and entanglement for open Λ-type atoms by engineering the environment
Xiao-Lan Wang(王晓岚), Yu-Kun Ren(任玉坤), Hao-Sheng Zeng(曾浩生). Chin. Phys. B, 2019, 28(3): 030301.
[13] Controllable photon echo phase induced by modulated pulses and chirped beat detection
Xian-Yang Zhang(张显扬), Shuang-Gen Zhang(张双根), Hua-Di Zhang(张化迪), Xiu-Rong Ma(马秀荣). Chin. Phys. B, 2019, 28(2): 024207.
[14] Observation of geometric phase in a dispersively coupled resonator-qutrit system
Libo Zhang(张礼博), Chao Song(宋超), H Wang(王浩华), Shi-Biao Zheng(郑仕标). Chin. Phys. B, 2018, 27(7): 070303.
[15] Controlling of entropic uncertainty in open quantum system via proper placement of quantum register
Ying-Hua Ji(嵇英华), Qiang Ke(柯强), Ju-Ju Hu(胡菊菊). Chin. Phys. B, 2018, 27(10): 100302.
No Suggested Reading articles found!