|
|
Geometric phase under the Unruh effect with intermediate statistics |
Jun Feng(冯俊)†, Jing-Jun Zhang(张精俊), and Qianyi Zhang(张倩怡) |
School of Physics, Xi'an Jiaotong University, Xi'an 710049, China |
|
|
Abstract Utilizing the geometric phase (GP) acquired in a quantum evolution, we manifest the thermality and quantum nature of the Unruh effect of an accelerating detector. We consider an UDW detector coupling to a conformal field in Minkowski spacetime, whose response spectrum exhibits an intermediate statistics of (1+1) anyon field. We find that comparing to an inertial moving detector, the GP in accelerating frame is modified after the nonunitary evolution of the detector due to the Unruh effect. We show that such modification can distinguish the different thermalizing ways of the detector, which depends on the scaling dimension of the conformal primary field. Finally, we estimate the difference between the GP under the Unruh radiation and that in a thermal bath for a static observer, which reveals the quantum origin of the Unruh effect rather than a conventional thermal noise.
|
Received: 13 March 2022
Revised: 13 March 2022
Accepted manuscript online:
|
PACS:
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
04.62.+v
|
(Quantum fields in curved spacetime)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No.12075178) and Natural Science Basic Research Plan in Shaanxi Province of China (Grant No.2018JM1049). |
Corresponding Authors:
Jun Feng,E-mail:j.feng@xjtu.edu.cn
E-mail: j.feng@xjtu.edu.cn
|
About author: 2022-3-14 |
Cite this article:
Jun Feng(冯俊), Jing-Jun Zhang(张精俊), and Qianyi Zhang(张倩怡) Geometric phase under the Unruh effect with intermediate statistics 2022 Chin. Phys. B 31 050312
|
[1] Pancharatnam S 1956 Proc. Indian Acad. Sci. A 44 247 [2] Aharonov Y and Bohm D 1959 Phys. Rev. 11 485 [3] Berry M V 1984 Proc. Roy. Soc. Lond. A 392 45 [4] Aharonov Y and Anandan J 1987 Phys. Rev. Lett. 58 1593 [5] Samuel J and Bhandari R 1988 Phys. Rev. Lett. 60 2339 [6] Zak J 1989 Phys. Rev. Lett. 62 2747 [7] Simon B 1983 Phys. Rev. Lett. 51 2167 [8] Vedral V 2003 Int. J. Quant. Inf. 1 1 [9] Jain S R and Pati A K 1998 Phys. Rev. Lett. 80 650 [10] Xiao D, Chang M and Niu Q 2010 Rev. Mod. Phys. 82 1959 [11] Kwiat P and Chiao R 1991 Phys. Rev. Lett. 66 588 [12] Hasegawa Y, Zawisky M, Rauch H and Ioffe A 1996 Phys. Rev. A 53 2486 [13] Uhlmann A 1986 Rep. Math. Phys. 24 229 [14] Sjöoqvist E, Pati A K, Ekert A, Anandan J S, Ericsson M, Oi D K L and Vedral V 2000 Phys. Rev. Lett. 85 2845 [15] Singh K, Tong D M, Basu K, Chen J L and Du J F 2003 Phys. Rev. A 67 032106 [16] Tong D M, Sjöqvist E, Kwek L C and Oh C H 2004 Phys. Rev. Lett. 93 080405 [17] Cucchietti F M, Zhang J, Lombardo F C, Villar P I and Laflamme R 2010 Phys. Rev. Lett. 105 240406 [18] Bassi A, Grossardt A and Ulbricht H 2017 Class. Quantum Grav. 34 193002 [19] Martín-Martínez E, Fuentes I and Mann R B 2011 Phys. Rev. Lett. 107 131301 [20] Hu J and Yu H 2012 Phys. Rev. A 85 032105 [21] Bell J S and Leinaas J M 1983 Nucl. Phys. B 212 131 [22] Hu J and Yu H 2014 Phys. Rev. A 89 064101 [23] Hu J and Yu H 2012 J. High Energy Phys. 9 62 [24] Feng J, Zhang Y Z, Gould M D and Fan H 2015 Phys. Lett. B 743 198 [25] Tian Z and Jing J 2013 J. High Energy Phys. 04 109 [26] Jing J, Cao Z, Liu X and Tian Z 2020 Class. Quantum Grav. 37 085001 [27] Liguori A, Mintchev M and Pilo L 2000 Nucl. Phys. B 569 577 [28] Ohya S 2017 Phys. Rev. D 96 045017 [29] Takagi S 1985 Prog. Theor. Phys. 74 142 [30] Arrechea J, Barceló C, Garay L J and García-Moreno G 2021 Phys. Rev. D 104 065004 [31] Benatti F and Floreanini R 2004 Phys. Rev. A 70 012112 [32] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford University Press) [33] Feng J and Zhang J 2022 Phys. Lett. B 827 136992 [34] Fradkin E S and Palchik M Y 1996 Conformal Quantum Field Theory in D-dimensions (Kluwer, Dordrecht) [35] Simmons-Duffin D in 2016 TASI 2015 New Frontiers in Fields and Strings, edited by J. Polchinski, P. Vieira and O. DeWolfe (World Scientific Press) [36] Gorini V, Frigerio A, Verri M, Kossakowski A and Surdarshan E C G 1978 Rep. Math. Phys. 13 149 [37] Gorini V, Kossakowski A and Surdarshan E C G 1976 J. Math. Phys. 17 821 [38] Lindblad G 1976 Commun. Math. Phys. 48 119 [39] Takagi S 1986 Prog. Theor. Phys. Suppl. 88 1 [40] Kollas N K, Moustos D and Blekos K 2020 Phys. Rev. D 102 065020 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|